Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexsng | Structured version Visualization version GIF version |
Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) Avoid ax-10 2137, ax-12 2171. (Revised by Gino Giotto, 30-Sep-2024.) |
Ref | Expression |
---|---|
ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexsng | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsng.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 318 | . . 3 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | ralsng 4609 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓)) |
4 | dfrex2 3168 | . . 3 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ ¬ ∀𝑥 ∈ {𝐴} ¬ 𝜑) | |
5 | bicom1 220 | . . . 4 ⊢ ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜓 ↔ ∀𝑥 ∈ {𝐴} ¬ 𝜑)) | |
6 | 5 | con1bid 356 | . . 3 ⊢ ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (¬ ∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ 𝜓)) |
7 | 4, 6 | bitrid 282 | . 2 ⊢ ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
8 | 3, 7 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3431 df-sn 4562 |
This theorem is referenced by: rexsn 4618 rextpg 4635 iunxsng 5018 frirr 5561 frsn 5669 imasng 5984 scshwfzeqfzo 14549 dvdsprmpweqnn 16596 mnd1 18436 grp1 18692 elntg2 27363 1loopgrvd0 27881 1egrvtxdg0 27888 nfrgr2v 28644 1vwmgr 28648 elgrplsmsn 31586 grplsmid 31600 ballotlemfc0 32467 ballotlemfcc 32468 addscllem1 34139 bj-restsn 35261 elpaddat 37826 elpadd2at 37828 brfvidRP 41277 mnuunid 41876 iccelpart 44863 zlidlring 45464 lco0 45746 |
Copyright terms: Public domain | W3C validator |