| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexsng | Structured version Visualization version GIF version | ||
| Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexsng | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsng.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . 3 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | 2 | ralsng 4656 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓)) |
| 4 | dfrex2 3064 | . . 3 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ ¬ ∀𝑥 ∈ {𝐴} ¬ 𝜑) | |
| 5 | bicom1 221 | . . . 4 ⊢ ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜓 ↔ ∀𝑥 ∈ {𝐴} ¬ 𝜑)) | |
| 6 | 5 | con1bid 355 | . . 3 ⊢ ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (¬ ∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ 𝜓)) |
| 7 | 4, 6 | bitrid 283 | . 2 ⊢ ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 8 | 3, 7 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-sn 4607 |
| This theorem is referenced by: rexsn 4663 rextpg 4680 iunxsng 5071 frirr 5635 frsn 5747 imasng 6076 naddunif 8710 scshwfzeqfzo 14850 dvdsprmpweqnn 16910 mnd1 18762 grp1 19035 pzriprnglem3 21449 pzriprnglem10 21456 psdmul 22109 cutmax 27899 cutmin 27900 halfcut 28390 elntg2 28969 1loopgrvd0 29489 1egrvtxdg0 29496 nfrgr2v 30258 1vwmgr 30262 elgrplsmsn 33410 grplsmid 33424 ballotlemfc0 34530 ballotlemfcc 34531 bj-restsn 37105 elrnressn 38296 elpaddat 39828 elpadd2at 39830 brfvidRP 43679 mnuunid 44268 iccelpart 47414 zlidlring 48176 lco0 48370 |
| Copyright terms: Public domain | W3C validator |