MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexsng Structured version   Visualization version   GIF version

Theorem rexsng 4607
Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) Avoid ax-10 2139, ax-12 2173. (Revised by Gino Giotto, 30-Sep-2024.)
Hypothesis
Ref Expression
ralsng.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexsng (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rexsng
StepHypRef Expression
1 ralsng.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21notbid 317 . . 3 (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓))
32ralsng 4606 . 2 (𝐴𝑉 → (∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓))
4 dfrex2 3166 . . 3 (∃𝑥 ∈ {𝐴}𝜑 ↔ ¬ ∀𝑥 ∈ {𝐴} ¬ 𝜑)
5 bicom1 220 . . . 4 ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜓 ↔ ∀𝑥 ∈ {𝐴} ¬ 𝜑))
65con1bid 355 . . 3 ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (¬ ∀𝑥 ∈ {𝐴} ¬ 𝜑𝜓))
74, 6syl5bb 282 . 2 ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (∃𝑥 ∈ {𝐴}𝜑𝜓))
83, 7syl 17 1 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-sn 4559
This theorem is referenced by:  rexsn  4615  rextpg  4632  iunxsng  5015  frirr  5557  frsn  5665  imasng  5980  scshwfzeqfzo  14467  dvdsprmpweqnn  16514  mnd1  18341  grp1  18597  elntg2  27256  1loopgrvd0  27774  1egrvtxdg0  27781  nfrgr2v  28537  1vwmgr  28541  elgrplsmsn  31480  grplsmid  31494  ballotlemfc0  32359  ballotlemfcc  32360  addscllem1  34058  bj-restsn  35180  elpaddat  37745  elpadd2at  37747  brfvidRP  41185  mnuunid  41784  iccelpart  44773  zlidlring  45374  lco0  45656
  Copyright terms: Public domain W3C validator