| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexsng | Structured version Visualization version GIF version | ||
| Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) Avoid ax-10 2144, ax-12 2180. (Revised by GG, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexsng | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsng.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . 3 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | 2 | ralsng 4623 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓)) |
| 4 | dfrex2 3059 | . . 3 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ ¬ ∀𝑥 ∈ {𝐴} ¬ 𝜑) | |
| 5 | bicom1 221 | . . . 4 ⊢ ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜓 ↔ ∀𝑥 ∈ {𝐴} ¬ 𝜑)) | |
| 6 | 5 | con1bid 355 | . . 3 ⊢ ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (¬ ∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ 𝜓)) |
| 7 | 4, 6 | bitrid 283 | . 2 ⊢ ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 8 | 3, 7 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {csn 4571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-sn 4572 |
| This theorem is referenced by: rexsn 4630 rextpg 4647 iunxsng 5033 frirr 5587 frsn 5699 imasng 6028 naddunif 8603 scshwfzeqfzo 14728 dvdsprmpweqnn 16792 mnd1 18682 grp1 18955 pzriprnglem3 21415 pzriprnglem10 21422 psdmul 22076 cutmax 27873 cutmin 27874 halfcut 28373 elntg2 28958 1loopgrvd0 29478 1egrvtxdg0 29485 nfrgr2v 30244 1vwmgr 30248 elgrplsmsn 33347 grplsmid 33361 ballotlemfc0 34498 ballotlemfcc 34499 bj-restsn 37116 elrnressn 38308 elpaddat 39843 elpadd2at 39845 brfvidRP 43721 mnuunid 44310 iccelpart 47464 zlidlring 48265 lco0 48459 |
| Copyright terms: Public domain | W3C validator |