![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexsng | Structured version Visualization version GIF version |
Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) Avoid ax-10 2141, ax-12 2178. (Revised by GG, 30-Sep-2024.) |
Ref | Expression |
---|---|
ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexsng | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsng.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 318 | . . 3 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | ralsng 4697 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓)) |
4 | dfrex2 3079 | . . 3 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ ¬ ∀𝑥 ∈ {𝐴} ¬ 𝜑) | |
5 | bicom1 221 | . . . 4 ⊢ ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜓 ↔ ∀𝑥 ∈ {𝐴} ¬ 𝜑)) | |
6 | 5 | con1bid 355 | . . 3 ⊢ ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (¬ ∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ 𝜓)) |
7 | 4, 6 | bitrid 283 | . 2 ⊢ ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
8 | 3, 7 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-sn 4649 |
This theorem is referenced by: rexsn 4706 rextpg 4724 iunxsng 5113 frirr 5676 frsn 5787 imasng 6113 naddunif 8749 scshwfzeqfzo 14875 dvdsprmpweqnn 16932 mnd1 18814 grp1 19087 pzriprnglem3 21517 pzriprnglem10 21524 psdmul 22193 cutmax 27986 cutmin 27987 halfcut 28434 elntg2 29018 1loopgrvd0 29540 1egrvtxdg0 29547 nfrgr2v 30304 1vwmgr 30308 elgrplsmsn 33383 grplsmid 33397 ballotlemfc0 34457 ballotlemfcc 34458 bj-restsn 37048 elrnressn 38229 elpaddat 39761 elpadd2at 39763 brfvidRP 43650 mnuunid 44246 iccelpart 47307 zlidlring 47957 lco0 48156 |
Copyright terms: Public domain | W3C validator |