MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexsng Structured version   Visualization version   GIF version

Theorem rexsng 4636
Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 30-Sep-2024.)
Hypothesis
Ref Expression
ralsng.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexsng (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rexsng
StepHypRef Expression
1 ralsng.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21notbid 318 . . 3 (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓))
32ralsng 4635 . 2 (𝐴𝑉 → (∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓))
4 dfrex2 3056 . . 3 (∃𝑥 ∈ {𝐴}𝜑 ↔ ¬ ∀𝑥 ∈ {𝐴} ¬ 𝜑)
5 bicom1 221 . . . 4 ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜓 ↔ ∀𝑥 ∈ {𝐴} ¬ 𝜑))
65con1bid 355 . . 3 ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (¬ ∀𝑥 ∈ {𝐴} ¬ 𝜑𝜓))
74, 6bitrid 283 . 2 ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (∃𝑥 ∈ {𝐴}𝜑𝜓))
83, 7syl 17 1 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {csn 4585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3446  df-sn 4586
This theorem is referenced by:  rexsn  4642  rextpg  4659  iunxsng  5049  frirr  5607  frsn  5719  imasng  6044  naddunif  8634  scshwfzeqfzo  14768  dvdsprmpweqnn  16832  mnd1  18682  grp1  18955  pzriprnglem3  21369  pzriprnglem10  21376  psdmul  22029  cutmax  27818  cutmin  27819  halfcut  28309  elntg2  28888  1loopgrvd0  29408  1egrvtxdg0  29415  nfrgr2v  30174  1vwmgr  30178  elgrplsmsn  33334  grplsmid  33348  ballotlemfc0  34457  ballotlemfcc  34458  bj-restsn  37043  elrnressn  38235  elpaddat  39771  elpadd2at  39773  brfvidRP  43650  mnuunid  44239  iccelpart  47407  zlidlring  48195  lco0  48389
  Copyright terms: Public domain W3C validator