| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexsng | Structured version Visualization version GIF version | ||
| Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) Avoid ax-10 2146, ax-12 2182. (Revised by GG, 30-Sep-2024.) |
| Ref | Expression |
|---|---|
| ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexsng | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsng.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . 3 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | 2 | ralsng 4629 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓)) |
| 4 | dfrex2 3060 | . . 3 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ ¬ ∀𝑥 ∈ {𝐴} ¬ 𝜑) | |
| 5 | bicom1 221 | . . . 4 ⊢ ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜓 ↔ ∀𝑥 ∈ {𝐴} ¬ 𝜑)) | |
| 6 | 5 | con1bid 355 | . . 3 ⊢ ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (¬ ∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ 𝜓)) |
| 7 | 4, 6 | bitrid 283 | . 2 ⊢ ((∀𝑥 ∈ {𝐴} ¬ 𝜑 ↔ ¬ 𝜓) → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 8 | 3, 7 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-v 3439 df-sn 4578 |
| This theorem is referenced by: rexsn 4636 rextpg 4653 iunxsng 5042 frirr 5597 frsn 5709 imasng 6040 naddunif 8617 scshwfzeqfzo 14740 dvdsprmpweqnn 16804 mnd1 18695 grp1 18968 pzriprnglem3 21429 pzriprnglem10 21436 psdmul 22100 cutmax 27898 cutmin 27899 halfcut 28398 elntg2 28984 1loopgrvd0 29504 1egrvtxdg0 29511 nfrgr2v 30273 1vwmgr 30277 elgrplsmsn 33399 grplsmid 33413 ballotlemfc0 34578 ballotlemfcc 34579 bj-restsn 37199 elrnressn 38385 elpaddat 39976 elpadd2at 39978 brfvidRP 43845 mnuunid 44434 iccelpart 47595 zlidlring 48396 lco0 48589 |
| Copyright terms: Public domain | W3C validator |