Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nummin Structured version   Visualization version   GIF version

Theorem nummin 32776
Description: Every nonempty class of numerable sets has a minimal element. (Contributed by BTernaryTau, 18-Jul-2024.)
Assertion
Ref Expression
nummin ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nummin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardf2 9559 . . . . . . . 8 card:{𝑧 ∣ ∃𝑦 ∈ On 𝑦𝑧}⟶On
2 ffun 6548 . . . . . . . . 9 (card:{𝑧 ∣ ∃𝑦 ∈ On 𝑦𝑧}⟶On → Fun card)
32funfnd 6411 . . . . . . . 8 (card:{𝑧 ∣ ∃𝑦 ∈ On 𝑦𝑧}⟶On → card Fn dom card)
41, 3ax-mp 5 . . . . . . 7 card Fn dom card
5 fnimaeq0 6511 . . . . . . 7 ((card Fn dom card ∧ 𝐴 ⊆ dom card) → ((card “ 𝐴) = ∅ ↔ 𝐴 = ∅))
64, 5mpan 690 . . . . . 6 (𝐴 ⊆ dom card → ((card “ 𝐴) = ∅ ↔ 𝐴 = ∅))
76necon3bid 2985 . . . . 5 (𝐴 ⊆ dom card → ((card “ 𝐴) ≠ ∅ ↔ 𝐴 ≠ ∅))
87biimprd 251 . . . 4 (𝐴 ⊆ dom card → (𝐴 ≠ ∅ → (card “ 𝐴) ≠ ∅))
98imdistani 572 . . 3 ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → (𝐴 ⊆ dom card ∧ (card “ 𝐴) ≠ ∅))
10 fimass 6566 . . . . . . . . . 10 (card:{𝑧 ∣ ∃𝑦 ∈ On 𝑦𝑧}⟶On → (card “ 𝐴) ⊆ On)
111, 10ax-mp 5 . . . . . . . . 9 (card “ 𝐴) ⊆ On
12 onssmin 7576 . . . . . . . . 9 (((card “ 𝐴) ⊆ On ∧ (card “ 𝐴) ≠ ∅) → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)𝑧𝑦)
1311, 12mpan 690 . . . . . . . 8 ((card “ 𝐴) ≠ ∅ → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)𝑧𝑦)
14 ssel 3893 . . . . . . . . . . . . 13 ((card “ 𝐴) ⊆ On → (𝑧 ∈ (card “ 𝐴) → 𝑧 ∈ On))
15 ssel 3893 . . . . . . . . . . . . 13 ((card “ 𝐴) ⊆ On → (𝑦 ∈ (card “ 𝐴) → 𝑦 ∈ On))
1614, 15anim12d 612 . . . . . . . . . . . 12 ((card “ 𝐴) ⊆ On → ((𝑧 ∈ (card “ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧 ∈ On ∧ 𝑦 ∈ On)))
1711, 16ax-mp 5 . . . . . . . . . . 11 ((𝑧 ∈ (card “ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧 ∈ On ∧ 𝑦 ∈ On))
18 ontri1 6247 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑦 ∈ On) → (𝑧𝑦 ↔ ¬ 𝑦𝑧))
1917, 18syl 17 . . . . . . . . . 10 ((𝑧 ∈ (card “ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧𝑦 ↔ ¬ 𝑦𝑧))
20 epel 5463 . . . . . . . . . . 11 (𝑦 E 𝑧𝑦𝑧)
2120notbii 323 . . . . . . . . . 10 𝑦 E 𝑧 ↔ ¬ 𝑦𝑧)
2219, 21bitr4di 292 . . . . . . . . 9 ((𝑧 ∈ (card “ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧𝑦 ↔ ¬ 𝑦 E 𝑧))
2322rgen2 3124 . . . . . . . 8 𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)
24 r19.29r 3177 . . . . . . . 8 ((∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∃𝑧 ∈ (card “ 𝐴)(∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)))
2513, 23, 24sylancl 589 . . . . . . 7 ((card “ 𝐴) ≠ ∅ → ∃𝑧 ∈ (card “ 𝐴)(∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)))
26 r19.26 3092 . . . . . . . . 9 (∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ∧ (𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) ↔ (∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)))
27 bicom1 224 . . . . . . . . . . 11 ((𝑧𝑦 ↔ ¬ 𝑦 E 𝑧) → (¬ 𝑦 E 𝑧𝑧𝑦))
2827biimparc 483 . . . . . . . . . 10 ((𝑧𝑦 ∧ (𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) → ¬ 𝑦 E 𝑧)
2928ralimi 3083 . . . . . . . . 9 (∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ∧ (𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧)
3026, 29sylbir 238 . . . . . . . 8 ((∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧)
3130reximi 3166 . . . . . . 7 (∃𝑧 ∈ (card “ 𝐴)(∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧)
3225, 31syl 17 . . . . . 6 ((card “ 𝐴) ≠ ∅ → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧)
3332adantl 485 . . . . 5 ((𝐴 ⊆ dom card ∧ (card “ 𝐴) ≠ ∅) → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧)
34 breq2 5057 . . . . . . . . . 10 (𝑧 = (card‘𝑥) → (𝑦 E 𝑧𝑦 E (card‘𝑥)))
3534notbid 321 . . . . . . . . 9 (𝑧 = (card‘𝑥) → (¬ 𝑦 E 𝑧 ↔ ¬ 𝑦 E (card‘𝑥)))
3635ralbidv 3118 . . . . . . . 8 (𝑧 = (card‘𝑥) → (∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥)))
3736rexima 7053 . . . . . . 7 ((card Fn dom card ∧ 𝐴 ⊆ dom card) → (∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∃𝑥𝐴𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥)))
384, 37mpan 690 . . . . . 6 (𝐴 ⊆ dom card → (∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∃𝑥𝐴𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥)))
3938adantr 484 . . . . 5 ((𝐴 ⊆ dom card ∧ (card “ 𝐴) ≠ ∅) → (∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∃𝑥𝐴𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥)))
4033, 39mpbid 235 . . . 4 ((𝐴 ⊆ dom card ∧ (card “ 𝐴) ≠ ∅) → ∃𝑥𝐴𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))
41 fvex 6730 . . . . . . . 8 (card‘𝑥) ∈ V
4241dfpred3 6170 . . . . . . 7 Pred( E , (card “ 𝐴), (card‘𝑥)) = {𝑦 ∈ (card “ 𝐴) ∣ 𝑦 E (card‘𝑥)}
4342eqeq1i 2742 . . . . . 6 (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ {𝑦 ∈ (card “ 𝐴) ∣ 𝑦 E (card‘𝑥)} = ∅)
44 rabeq0 4299 . . . . . 6 ({𝑦 ∈ (card “ 𝐴) ∣ 𝑦 E (card‘𝑥)} = ∅ ↔ ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))
4543, 44bitri 278 . . . . 5 (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))
4645rexbii 3170 . . . 4 (∃𝑥𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ ∃𝑥𝐴𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))
4740, 46sylibr 237 . . 3 ((𝐴 ⊆ dom card ∧ (card “ 𝐴) ≠ ∅) → ∃𝑥𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅)
489, 47syl 17 . 2 ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅)
49 ssel2 3895 . . . . 5 ((𝐴 ⊆ dom card ∧ 𝑥𝐴) → 𝑥 ∈ dom card)
50 cardpred 32775 . . . . . . 7 ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝑥)) = (card “ Pred( ≺ , 𝐴, 𝑥)))
5150eqeq1d 2739 . . . . . 6 ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ (card “ Pred( ≺ , 𝐴, 𝑥)) = ∅))
52 predss 6167 . . . . . . . . 9 Pred( ≺ , 𝐴, 𝑥) ⊆ 𝐴
53 sstr 3909 . . . . . . . . 9 ((Pred( ≺ , 𝐴, 𝑥) ⊆ 𝐴𝐴 ⊆ dom card) → Pred( ≺ , 𝐴, 𝑥) ⊆ dom card)
5452, 53mpan 690 . . . . . . . 8 (𝐴 ⊆ dom card → Pred( ≺ , 𝐴, 𝑥) ⊆ dom card)
55 fnimaeq0 6511 . . . . . . . 8 ((card Fn dom card ∧ Pred( ≺ , 𝐴, 𝑥) ⊆ dom card) → ((card “ Pred( ≺ , 𝐴, 𝑥)) = ∅ ↔ Pred( ≺ , 𝐴, 𝑥) = ∅))
564, 54, 55sylancr 590 . . . . . . 7 (𝐴 ⊆ dom card → ((card “ Pred( ≺ , 𝐴, 𝑥)) = ∅ ↔ Pred( ≺ , 𝐴, 𝑥) = ∅))
5756adantr 484 . . . . . 6 ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → ((card “ Pred( ≺ , 𝐴, 𝑥)) = ∅ ↔ Pred( ≺ , 𝐴, 𝑥) = ∅))
5851, 57bitrd 282 . . . . 5 ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ Pred( ≺ , 𝐴, 𝑥) = ∅))
5949, 58syldan 594 . . . 4 ((𝐴 ⊆ dom card ∧ 𝑥𝐴) → (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ Pred( ≺ , 𝐴, 𝑥) = ∅))
6059rexbidva 3215 . . 3 (𝐴 ⊆ dom card → (∃𝑥𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ ∃𝑥𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅))
6160adantr 484 . 2 ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ ∃𝑥𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅))
6248, 61mpbid 235 1 ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  {cab 2714  wne 2940  wral 3061  wrex 3062  {crab 3065  wss 3866  c0 4237   class class class wbr 5053   E cep 5459  dom cdm 5551  cima 5554  Predcpred 6159  Oncon0 6213   Fn wfn 6375  wf 6376  cfv 6380  cen 8623  csdm 8625  cardccrd 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-card 9555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator