Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nummin Structured version   Visualization version   GIF version

Theorem nummin 35081
Description: Every nonempty class of numerable sets has a minimal element. (Contributed by BTernaryTau, 18-Jul-2024.)
Assertion
Ref Expression
nummin ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nummin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardf2 9896 . . . . . . . 8 card:{𝑧 ∣ ∃𝑦 ∈ On 𝑦𝑧}⟶On
2 ffun 6691 . . . . . . . . 9 (card:{𝑧 ∣ ∃𝑦 ∈ On 𝑦𝑧}⟶On → Fun card)
32funfnd 6547 . . . . . . . 8 (card:{𝑧 ∣ ∃𝑦 ∈ On 𝑦𝑧}⟶On → card Fn dom card)
41, 3ax-mp 5 . . . . . . 7 card Fn dom card
5 fnimaeq0 6651 . . . . . . 7 ((card Fn dom card ∧ 𝐴 ⊆ dom card) → ((card “ 𝐴) = ∅ ↔ 𝐴 = ∅))
64, 5mpan 690 . . . . . 6 (𝐴 ⊆ dom card → ((card “ 𝐴) = ∅ ↔ 𝐴 = ∅))
76necon3bid 2969 . . . . 5 (𝐴 ⊆ dom card → ((card “ 𝐴) ≠ ∅ ↔ 𝐴 ≠ ∅))
87biimprd 248 . . . 4 (𝐴 ⊆ dom card → (𝐴 ≠ ∅ → (card “ 𝐴) ≠ ∅))
98imdistani 568 . . 3 ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → (𝐴 ⊆ dom card ∧ (card “ 𝐴) ≠ ∅))
10 fimass 6708 . . . . . . . . . 10 (card:{𝑧 ∣ ∃𝑦 ∈ On 𝑦𝑧}⟶On → (card “ 𝐴) ⊆ On)
111, 10ax-mp 5 . . . . . . . . 9 (card “ 𝐴) ⊆ On
12 onssmin 7768 . . . . . . . . 9 (((card “ 𝐴) ⊆ On ∧ (card “ 𝐴) ≠ ∅) → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)𝑧𝑦)
1311, 12mpan 690 . . . . . . . 8 ((card “ 𝐴) ≠ ∅ → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)𝑧𝑦)
14 ssel 3940 . . . . . . . . . . . . 13 ((card “ 𝐴) ⊆ On → (𝑧 ∈ (card “ 𝐴) → 𝑧 ∈ On))
15 ssel 3940 . . . . . . . . . . . . 13 ((card “ 𝐴) ⊆ On → (𝑦 ∈ (card “ 𝐴) → 𝑦 ∈ On))
1614, 15anim12d 609 . . . . . . . . . . . 12 ((card “ 𝐴) ⊆ On → ((𝑧 ∈ (card “ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧 ∈ On ∧ 𝑦 ∈ On)))
1711, 16ax-mp 5 . . . . . . . . . . 11 ((𝑧 ∈ (card “ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧 ∈ On ∧ 𝑦 ∈ On))
18 ontri1 6366 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑦 ∈ On) → (𝑧𝑦 ↔ ¬ 𝑦𝑧))
1917, 18syl 17 . . . . . . . . . 10 ((𝑧 ∈ (card “ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧𝑦 ↔ ¬ 𝑦𝑧))
20 epel 5541 . . . . . . . . . . 11 (𝑦 E 𝑧𝑦𝑧)
2120notbii 320 . . . . . . . . . 10 𝑦 E 𝑧 ↔ ¬ 𝑦𝑧)
2219, 21bitr4di 289 . . . . . . . . 9 ((𝑧 ∈ (card “ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧𝑦 ↔ ¬ 𝑦 E 𝑧))
2322rgen2 3177 . . . . . . . 8 𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)
24 r19.29r 3096 . . . . . . . 8 ((∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∃𝑧 ∈ (card “ 𝐴)(∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)))
2513, 23, 24sylancl 586 . . . . . . 7 ((card “ 𝐴) ≠ ∅ → ∃𝑧 ∈ (card “ 𝐴)(∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)))
26 r19.26 3091 . . . . . . . . 9 (∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ∧ (𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) ↔ (∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)))
27 bicom1 221 . . . . . . . . . . 11 ((𝑧𝑦 ↔ ¬ 𝑦 E 𝑧) → (¬ 𝑦 E 𝑧𝑧𝑦))
2827biimparc 479 . . . . . . . . . 10 ((𝑧𝑦 ∧ (𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) → ¬ 𝑦 E 𝑧)
2928ralimi 3066 . . . . . . . . 9 (∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ∧ (𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧)
3026, 29sylbir 235 . . . . . . . 8 ((∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧)
3130reximi 3067 . . . . . . 7 (∃𝑧 ∈ (card “ 𝐴)(∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧)
3225, 31syl 17 . . . . . 6 ((card “ 𝐴) ≠ ∅ → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧)
3332adantl 481 . . . . 5 ((𝐴 ⊆ dom card ∧ (card “ 𝐴) ≠ ∅) → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧)
34 breq2 5111 . . . . . . . . . 10 (𝑧 = (card‘𝑥) → (𝑦 E 𝑧𝑦 E (card‘𝑥)))
3534notbid 318 . . . . . . . . 9 (𝑧 = (card‘𝑥) → (¬ 𝑦 E 𝑧 ↔ ¬ 𝑦 E (card‘𝑥)))
3635ralbidv 3156 . . . . . . . 8 (𝑧 = (card‘𝑥) → (∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥)))
3736rexima 7212 . . . . . . 7 ((card Fn dom card ∧ 𝐴 ⊆ dom card) → (∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∃𝑥𝐴𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥)))
384, 37mpan 690 . . . . . 6 (𝐴 ⊆ dom card → (∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∃𝑥𝐴𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥)))
3938adantr 480 . . . . 5 ((𝐴 ⊆ dom card ∧ (card “ 𝐴) ≠ ∅) → (∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∃𝑥𝐴𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥)))
4033, 39mpbid 232 . . . 4 ((𝐴 ⊆ dom card ∧ (card “ 𝐴) ≠ ∅) → ∃𝑥𝐴𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))
41 fvex 6871 . . . . . . . 8 (card‘𝑥) ∈ V
4241dfpred3 6285 . . . . . . 7 Pred( E , (card “ 𝐴), (card‘𝑥)) = {𝑦 ∈ (card “ 𝐴) ∣ 𝑦 E (card‘𝑥)}
4342eqeq1i 2734 . . . . . 6 (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ {𝑦 ∈ (card “ 𝐴) ∣ 𝑦 E (card‘𝑥)} = ∅)
44 rabeq0 4351 . . . . . 6 ({𝑦 ∈ (card “ 𝐴) ∣ 𝑦 E (card‘𝑥)} = ∅ ↔ ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))
4543, 44bitri 275 . . . . 5 (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))
4645rexbii 3076 . . . 4 (∃𝑥𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ ∃𝑥𝐴𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))
4740, 46sylibr 234 . . 3 ((𝐴 ⊆ dom card ∧ (card “ 𝐴) ≠ ∅) → ∃𝑥𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅)
489, 47syl 17 . 2 ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅)
49 ssel2 3941 . . . . 5 ((𝐴 ⊆ dom card ∧ 𝑥𝐴) → 𝑥 ∈ dom card)
50 cardpred 35080 . . . . . . 7 ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝑥)) = (card “ Pred( ≺ , 𝐴, 𝑥)))
5150eqeq1d 2731 . . . . . 6 ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ (card “ Pred( ≺ , 𝐴, 𝑥)) = ∅))
52 predss 6282 . . . . . . . . 9 Pred( ≺ , 𝐴, 𝑥) ⊆ 𝐴
53 sstr 3955 . . . . . . . . 9 ((Pred( ≺ , 𝐴, 𝑥) ⊆ 𝐴𝐴 ⊆ dom card) → Pred( ≺ , 𝐴, 𝑥) ⊆ dom card)
5452, 53mpan 690 . . . . . . . 8 (𝐴 ⊆ dom card → Pred( ≺ , 𝐴, 𝑥) ⊆ dom card)
55 fnimaeq0 6651 . . . . . . . 8 ((card Fn dom card ∧ Pred( ≺ , 𝐴, 𝑥) ⊆ dom card) → ((card “ Pred( ≺ , 𝐴, 𝑥)) = ∅ ↔ Pred( ≺ , 𝐴, 𝑥) = ∅))
564, 54, 55sylancr 587 . . . . . . 7 (𝐴 ⊆ dom card → ((card “ Pred( ≺ , 𝐴, 𝑥)) = ∅ ↔ Pred( ≺ , 𝐴, 𝑥) = ∅))
5756adantr 480 . . . . . 6 ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → ((card “ Pred( ≺ , 𝐴, 𝑥)) = ∅ ↔ Pred( ≺ , 𝐴, 𝑥) = ∅))
5851, 57bitrd 279 . . . . 5 ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ Pred( ≺ , 𝐴, 𝑥) = ∅))
5949, 58syldan 591 . . . 4 ((𝐴 ⊆ dom card ∧ 𝑥𝐴) → (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ Pred( ≺ , 𝐴, 𝑥) = ∅))
6059rexbidva 3155 . . 3 (𝐴 ⊆ dom card → (∃𝑥𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ ∃𝑥𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅))
6160adantr 480 . 2 ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ ∃𝑥𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅))
6248, 61mpbid 232 1 ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3405  wss 3914  c0 4296   class class class wbr 5107   E cep 5537  dom cdm 5638  cima 5641  Predcpred 6273  Oncon0 6332   Fn wfn 6506  wf 6507  cfv 6511  cen 8915  csdm 8917  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-card 9892
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator