| Step | Hyp | Ref
| Expression |
| 1 | | cardf2 9983 |
. . . . . . . 8
⊢
card:{𝑧 ∣
∃𝑦 ∈ On 𝑦 ≈ 𝑧}⟶On |
| 2 | | ffun 6739 |
. . . . . . . . 9
⊢
(card:{𝑧 ∣
∃𝑦 ∈ On 𝑦 ≈ 𝑧}⟶On → Fun card) |
| 3 | 2 | funfnd 6597 |
. . . . . . . 8
⊢
(card:{𝑧 ∣
∃𝑦 ∈ On 𝑦 ≈ 𝑧}⟶On → card Fn dom
card) |
| 4 | 1, 3 | ax-mp 5 |
. . . . . . 7
⊢ card Fn
dom card |
| 5 | | fnimaeq0 6701 |
. . . . . . 7
⊢ ((card Fn
dom card ∧ 𝐴 ⊆
dom card) → ((card “ 𝐴) = ∅ ↔ 𝐴 = ∅)) |
| 6 | 4, 5 | mpan 690 |
. . . . . 6
⊢ (𝐴 ⊆ dom card → ((card
“ 𝐴) = ∅ ↔
𝐴 =
∅)) |
| 7 | 6 | necon3bid 2985 |
. . . . 5
⊢ (𝐴 ⊆ dom card → ((card
“ 𝐴) ≠ ∅
↔ 𝐴 ≠
∅)) |
| 8 | 7 | biimprd 248 |
. . . 4
⊢ (𝐴 ⊆ dom card → (𝐴 ≠ ∅ → (card
“ 𝐴) ≠
∅)) |
| 9 | 8 | imdistani 568 |
. . 3
⊢ ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → (𝐴 ⊆ dom card ∧ (card
“ 𝐴) ≠
∅)) |
| 10 | | fimass 6756 |
. . . . . . . . . 10
⊢
(card:{𝑧 ∣
∃𝑦 ∈ On 𝑦 ≈ 𝑧}⟶On → (card “ 𝐴) ⊆ On) |
| 11 | 1, 10 | ax-mp 5 |
. . . . . . . . 9
⊢ (card
“ 𝐴) ⊆
On |
| 12 | | onssmin 7812 |
. . . . . . . . 9
⊢ (((card
“ 𝐴) ⊆ On ∧
(card “ 𝐴) ≠
∅) → ∃𝑧
∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)𝑧 ⊆ 𝑦) |
| 13 | 11, 12 | mpan 690 |
. . . . . . . 8
⊢ ((card
“ 𝐴) ≠ ∅
→ ∃𝑧 ∈
(card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)𝑧 ⊆ 𝑦) |
| 14 | | ssel 3977 |
. . . . . . . . . . . . 13
⊢ ((card
“ 𝐴) ⊆ On
→ (𝑧 ∈ (card
“ 𝐴) → 𝑧 ∈ On)) |
| 15 | | ssel 3977 |
. . . . . . . . . . . . 13
⊢ ((card
“ 𝐴) ⊆ On
→ (𝑦 ∈ (card
“ 𝐴) → 𝑦 ∈ On)) |
| 16 | 14, 15 | anim12d 609 |
. . . . . . . . . . . 12
⊢ ((card
“ 𝐴) ⊆ On
→ ((𝑧 ∈ (card
“ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧 ∈ On ∧ 𝑦 ∈ On))) |
| 17 | 11, 16 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ (card “ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧 ∈ On ∧ 𝑦 ∈ On)) |
| 18 | | ontri1 6418 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ On ∧ 𝑦 ∈ On) → (𝑧 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑧)) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (card “ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧 ⊆ 𝑦 ↔ ¬ 𝑦 ∈ 𝑧)) |
| 20 | | epel 5587 |
. . . . . . . . . . 11
⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) |
| 21 | 20 | notbii 320 |
. . . . . . . . . 10
⊢ (¬
𝑦 E 𝑧 ↔ ¬ 𝑦 ∈ 𝑧) |
| 22 | 19, 21 | bitr4di 289 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (card “ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧 ⊆ 𝑦 ↔ ¬ 𝑦 E 𝑧)) |
| 23 | 22 | rgen2 3199 |
. . . . . . . 8
⊢
∀𝑧 ∈
(card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)(𝑧 ⊆ 𝑦 ↔ ¬ 𝑦 E 𝑧) |
| 24 | | r19.29r 3116 |
. . . . . . . 8
⊢
((∃𝑧 ∈
(card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)𝑧 ⊆ 𝑦 ∧ ∀𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)(𝑧 ⊆ 𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∃𝑧 ∈ (card “ 𝐴)(∀𝑦 ∈ (card “ 𝐴)𝑧 ⊆ 𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧 ⊆ 𝑦 ↔ ¬ 𝑦 E 𝑧))) |
| 25 | 13, 23, 24 | sylancl 586 |
. . . . . . 7
⊢ ((card
“ 𝐴) ≠ ∅
→ ∃𝑧 ∈
(card “ 𝐴)(∀𝑦 ∈ (card “ 𝐴)𝑧 ⊆ 𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧 ⊆ 𝑦 ↔ ¬ 𝑦 E 𝑧))) |
| 26 | | r19.26 3111 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
(card “ 𝐴)(𝑧 ⊆ 𝑦 ∧ (𝑧 ⊆ 𝑦 ↔ ¬ 𝑦 E 𝑧)) ↔ (∀𝑦 ∈ (card “ 𝐴)𝑧 ⊆ 𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧 ⊆ 𝑦 ↔ ¬ 𝑦 E 𝑧))) |
| 27 | | bicom1 221 |
. . . . . . . . . . 11
⊢ ((𝑧 ⊆ 𝑦 ↔ ¬ 𝑦 E 𝑧) → (¬ 𝑦 E 𝑧 ↔ 𝑧 ⊆ 𝑦)) |
| 28 | 27 | biimparc 479 |
. . . . . . . . . 10
⊢ ((𝑧 ⊆ 𝑦 ∧ (𝑧 ⊆ 𝑦 ↔ ¬ 𝑦 E 𝑧)) → ¬ 𝑦 E 𝑧) |
| 29 | 28 | ralimi 3083 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
(card “ 𝐴)(𝑧 ⊆ 𝑦 ∧ (𝑧 ⊆ 𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧) |
| 30 | 26, 29 | sylbir 235 |
. . . . . . . 8
⊢
((∀𝑦 ∈
(card “ 𝐴)𝑧 ⊆ 𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧 ⊆ 𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧) |
| 31 | 30 | reximi 3084 |
. . . . . . 7
⊢
(∃𝑧 ∈
(card “ 𝐴)(∀𝑦 ∈ (card “ 𝐴)𝑧 ⊆ 𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧 ⊆ 𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧) |
| 32 | 25, 31 | syl 17 |
. . . . . 6
⊢ ((card
“ 𝐴) ≠ ∅
→ ∃𝑧 ∈
(card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧) |
| 33 | 32 | adantl 481 |
. . . . 5
⊢ ((𝐴 ⊆ dom card ∧ (card
“ 𝐴) ≠ ∅)
→ ∃𝑧 ∈
(card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧) |
| 34 | | breq2 5147 |
. . . . . . . . . 10
⊢ (𝑧 = (card‘𝑥) → (𝑦 E 𝑧 ↔ 𝑦 E (card‘𝑥))) |
| 35 | 34 | notbid 318 |
. . . . . . . . 9
⊢ (𝑧 = (card‘𝑥) → (¬ 𝑦 E 𝑧 ↔ ¬ 𝑦 E (card‘𝑥))) |
| 36 | 35 | ralbidv 3178 |
. . . . . . . 8
⊢ (𝑧 = (card‘𝑥) → (∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))) |
| 37 | 36 | rexima 7258 |
. . . . . . 7
⊢ ((card Fn
dom card ∧ 𝐴 ⊆
dom card) → (∃𝑧
∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))) |
| 38 | 4, 37 | mpan 690 |
. . . . . 6
⊢ (𝐴 ⊆ dom card →
(∃𝑧 ∈ (card
“ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))) |
| 39 | 38 | adantr 480 |
. . . . 5
⊢ ((𝐴 ⊆ dom card ∧ (card
“ 𝐴) ≠ ∅)
→ (∃𝑧 ∈
(card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))) |
| 40 | 33, 39 | mpbid 232 |
. . . 4
⊢ ((𝐴 ⊆ dom card ∧ (card
“ 𝐴) ≠ ∅)
→ ∃𝑥 ∈
𝐴 ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥)) |
| 41 | | fvex 6919 |
. . . . . . . 8
⊢
(card‘𝑥)
∈ V |
| 42 | 41 | dfpred3 6332 |
. . . . . . 7
⊢ Pred( E ,
(card “ 𝐴),
(card‘𝑥)) = {𝑦 ∈ (card “ 𝐴) ∣ 𝑦 E (card‘𝑥)} |
| 43 | 42 | eqeq1i 2742 |
. . . . . 6
⊢ (Pred( E
, (card “ 𝐴),
(card‘𝑥)) = ∅
↔ {𝑦 ∈ (card
“ 𝐴) ∣ 𝑦 E (card‘𝑥)} = ∅) |
| 44 | | rabeq0 4388 |
. . . . . 6
⊢ ({𝑦 ∈ (card “ 𝐴) ∣ 𝑦 E (card‘𝑥)} = ∅ ↔ ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥)) |
| 45 | 43, 44 | bitri 275 |
. . . . 5
⊢ (Pred( E
, (card “ 𝐴),
(card‘𝑥)) = ∅
↔ ∀𝑦 ∈
(card “ 𝐴) ¬
𝑦 E (card‘𝑥)) |
| 46 | 45 | rexbii 3094 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 Pred( E , (card “
𝐴), (card‘𝑥)) = ∅ ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥)) |
| 47 | 40, 46 | sylibr 234 |
. . 3
⊢ ((𝐴 ⊆ dom card ∧ (card
“ 𝐴) ≠ ∅)
→ ∃𝑥 ∈
𝐴 Pred( E , (card “
𝐴), (card‘𝑥)) = ∅) |
| 48 | 9, 47 | syl 17 |
. 2
⊢ ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) →
∃𝑥 ∈ 𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅) |
| 49 | | ssel2 3978 |
. . . . 5
⊢ ((𝐴 ⊆ dom card ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom card) |
| 50 | | cardpred 35104 |
. . . . . . 7
⊢ ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → Pred( E
, (card “ 𝐴),
(card‘𝑥)) = (card
“ Pred( ≺ , 𝐴,
𝑥))) |
| 51 | 50 | eqeq1d 2739 |
. . . . . 6
⊢ ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → (Pred(
E , (card “ 𝐴),
(card‘𝑥)) = ∅
↔ (card “ Pred( ≺ , 𝐴, 𝑥)) = ∅)) |
| 52 | | predss 6329 |
. . . . . . . . 9
⊢ Pred(
≺ , 𝐴, 𝑥) ⊆ 𝐴 |
| 53 | | sstr 3992 |
. . . . . . . . 9
⊢ ((Pred(
≺ , 𝐴, 𝑥) ⊆ 𝐴 ∧ 𝐴 ⊆ dom card) → Pred( ≺ ,
𝐴, 𝑥) ⊆ dom card) |
| 54 | 52, 53 | mpan 690 |
. . . . . . . 8
⊢ (𝐴 ⊆ dom card → Pred(
≺ , 𝐴, 𝑥) ⊆ dom
card) |
| 55 | | fnimaeq0 6701 |
. . . . . . . 8
⊢ ((card Fn
dom card ∧ Pred( ≺ , 𝐴, 𝑥) ⊆ dom card) → ((card “
Pred( ≺ , 𝐴, 𝑥)) = ∅ ↔ Pred(
≺ , 𝐴, 𝑥) = ∅)) |
| 56 | 4, 54, 55 | sylancr 587 |
. . . . . . 7
⊢ (𝐴 ⊆ dom card → ((card
“ Pred( ≺ , 𝐴,
𝑥)) = ∅ ↔ Pred(
≺ , 𝐴, 𝑥) = ∅)) |
| 57 | 56 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → ((card
“ Pred( ≺ , 𝐴,
𝑥)) = ∅ ↔ Pred(
≺ , 𝐴, 𝑥) = ∅)) |
| 58 | 51, 57 | bitrd 279 |
. . . . 5
⊢ ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → (Pred(
E , (card “ 𝐴),
(card‘𝑥)) = ∅
↔ Pred( ≺ , 𝐴,
𝑥) =
∅)) |
| 59 | 49, 58 | syldan 591 |
. . . 4
⊢ ((𝐴 ⊆ dom card ∧ 𝑥 ∈ 𝐴) → (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ Pred(
≺ , 𝐴, 𝑥) = ∅)) |
| 60 | 59 | rexbidva 3177 |
. . 3
⊢ (𝐴 ⊆ dom card →
(∃𝑥 ∈ 𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ ∃𝑥 ∈ 𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅)) |
| 61 | 60 | adantr 480 |
. 2
⊢ ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) →
(∃𝑥 ∈ 𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ ∃𝑥 ∈ 𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅)) |
| 62 | 48, 61 | mpbid 232 |
1
⊢ ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) →
∃𝑥 ∈ 𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅) |