Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nummin Structured version   Visualization version   GIF version

Theorem nummin 35099
Description: Every nonempty class of numerable sets has a minimal element. (Contributed by BTernaryTau, 18-Jul-2024.)
Assertion
Ref Expression
nummin ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nummin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardf2 9833 . . . . . . . 8 card:{𝑧 ∣ ∃𝑦 ∈ On 𝑦𝑧}⟶On
2 ffun 6654 . . . . . . . . 9 (card:{𝑧 ∣ ∃𝑦 ∈ On 𝑦𝑧}⟶On → Fun card)
32funfnd 6512 . . . . . . . 8 (card:{𝑧 ∣ ∃𝑦 ∈ On 𝑦𝑧}⟶On → card Fn dom card)
41, 3ax-mp 5 . . . . . . 7 card Fn dom card
5 fnimaeq0 6614 . . . . . . 7 ((card Fn dom card ∧ 𝐴 ⊆ dom card) → ((card “ 𝐴) = ∅ ↔ 𝐴 = ∅))
64, 5mpan 690 . . . . . 6 (𝐴 ⊆ dom card → ((card “ 𝐴) = ∅ ↔ 𝐴 = ∅))
76necon3bid 2972 . . . . 5 (𝐴 ⊆ dom card → ((card “ 𝐴) ≠ ∅ ↔ 𝐴 ≠ ∅))
87biimprd 248 . . . 4 (𝐴 ⊆ dom card → (𝐴 ≠ ∅ → (card “ 𝐴) ≠ ∅))
98imdistani 568 . . 3 ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → (𝐴 ⊆ dom card ∧ (card “ 𝐴) ≠ ∅))
10 fimass 6671 . . . . . . . . . 10 (card:{𝑧 ∣ ∃𝑦 ∈ On 𝑦𝑧}⟶On → (card “ 𝐴) ⊆ On)
111, 10ax-mp 5 . . . . . . . . 9 (card “ 𝐴) ⊆ On
12 onssmin 7725 . . . . . . . . 9 (((card “ 𝐴) ⊆ On ∧ (card “ 𝐴) ≠ ∅) → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)𝑧𝑦)
1311, 12mpan 690 . . . . . . . 8 ((card “ 𝐴) ≠ ∅ → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)𝑧𝑦)
14 ssel 3928 . . . . . . . . . . . . 13 ((card “ 𝐴) ⊆ On → (𝑧 ∈ (card “ 𝐴) → 𝑧 ∈ On))
15 ssel 3928 . . . . . . . . . . . . 13 ((card “ 𝐴) ⊆ On → (𝑦 ∈ (card “ 𝐴) → 𝑦 ∈ On))
1614, 15anim12d 609 . . . . . . . . . . . 12 ((card “ 𝐴) ⊆ On → ((𝑧 ∈ (card “ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧 ∈ On ∧ 𝑦 ∈ On)))
1711, 16ax-mp 5 . . . . . . . . . . 11 ((𝑧 ∈ (card “ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧 ∈ On ∧ 𝑦 ∈ On))
18 ontri1 6340 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ 𝑦 ∈ On) → (𝑧𝑦 ↔ ¬ 𝑦𝑧))
1917, 18syl 17 . . . . . . . . . 10 ((𝑧 ∈ (card “ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧𝑦 ↔ ¬ 𝑦𝑧))
20 epel 5519 . . . . . . . . . . 11 (𝑦 E 𝑧𝑦𝑧)
2120notbii 320 . . . . . . . . . 10 𝑦 E 𝑧 ↔ ¬ 𝑦𝑧)
2219, 21bitr4di 289 . . . . . . . . 9 ((𝑧 ∈ (card “ 𝐴) ∧ 𝑦 ∈ (card “ 𝐴)) → (𝑧𝑦 ↔ ¬ 𝑦 E 𝑧))
2322rgen2 3172 . . . . . . . 8 𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)
24 r19.29r 3096 . . . . . . . 8 ((∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∃𝑧 ∈ (card “ 𝐴)(∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)))
2513, 23, 24sylancl 586 . . . . . . 7 ((card “ 𝐴) ≠ ∅ → ∃𝑧 ∈ (card “ 𝐴)(∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)))
26 r19.26 3092 . . . . . . . . 9 (∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ∧ (𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) ↔ (∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)))
27 bicom1 221 . . . . . . . . . . 11 ((𝑧𝑦 ↔ ¬ 𝑦 E 𝑧) → (¬ 𝑦 E 𝑧𝑧𝑦))
2827biimparc 479 . . . . . . . . . 10 ((𝑧𝑦 ∧ (𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) → ¬ 𝑦 E 𝑧)
2928ralimi 3069 . . . . . . . . 9 (∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ∧ (𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧)
3026, 29sylbir 235 . . . . . . . 8 ((∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧)
3130reximi 3070 . . . . . . 7 (∃𝑧 ∈ (card “ 𝐴)(∀𝑦 ∈ (card “ 𝐴)𝑧𝑦 ∧ ∀𝑦 ∈ (card “ 𝐴)(𝑧𝑦 ↔ ¬ 𝑦 E 𝑧)) → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧)
3225, 31syl 17 . . . . . 6 ((card “ 𝐴) ≠ ∅ → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧)
3332adantl 481 . . . . 5 ((𝐴 ⊆ dom card ∧ (card “ 𝐴) ≠ ∅) → ∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧)
34 breq2 5095 . . . . . . . . . 10 (𝑧 = (card‘𝑥) → (𝑦 E 𝑧𝑦 E (card‘𝑥)))
3534notbid 318 . . . . . . . . 9 (𝑧 = (card‘𝑥) → (¬ 𝑦 E 𝑧 ↔ ¬ 𝑦 E (card‘𝑥)))
3635ralbidv 3155 . . . . . . . 8 (𝑧 = (card‘𝑥) → (∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥)))
3736rexima 7172 . . . . . . 7 ((card Fn dom card ∧ 𝐴 ⊆ dom card) → (∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∃𝑥𝐴𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥)))
384, 37mpan 690 . . . . . 6 (𝐴 ⊆ dom card → (∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∃𝑥𝐴𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥)))
3938adantr 480 . . . . 5 ((𝐴 ⊆ dom card ∧ (card “ 𝐴) ≠ ∅) → (∃𝑧 ∈ (card “ 𝐴)∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E 𝑧 ↔ ∃𝑥𝐴𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥)))
4033, 39mpbid 232 . . . 4 ((𝐴 ⊆ dom card ∧ (card “ 𝐴) ≠ ∅) → ∃𝑥𝐴𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))
41 fvex 6835 . . . . . . . 8 (card‘𝑥) ∈ V
4241dfpred3 6259 . . . . . . 7 Pred( E , (card “ 𝐴), (card‘𝑥)) = {𝑦 ∈ (card “ 𝐴) ∣ 𝑦 E (card‘𝑥)}
4342eqeq1i 2736 . . . . . 6 (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ {𝑦 ∈ (card “ 𝐴) ∣ 𝑦 E (card‘𝑥)} = ∅)
44 rabeq0 4338 . . . . . 6 ({𝑦 ∈ (card “ 𝐴) ∣ 𝑦 E (card‘𝑥)} = ∅ ↔ ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))
4543, 44bitri 275 . . . . 5 (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ ∀𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))
4645rexbii 3079 . . . 4 (∃𝑥𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ ∃𝑥𝐴𝑦 ∈ (card “ 𝐴) ¬ 𝑦 E (card‘𝑥))
4740, 46sylibr 234 . . 3 ((𝐴 ⊆ dom card ∧ (card “ 𝐴) ≠ ∅) → ∃𝑥𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅)
489, 47syl 17 . 2 ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅)
49 ssel2 3929 . . . . 5 ((𝐴 ⊆ dom card ∧ 𝑥𝐴) → 𝑥 ∈ dom card)
50 cardpred 35098 . . . . . . 7 ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝑥)) = (card “ Pred( ≺ , 𝐴, 𝑥)))
5150eqeq1d 2733 . . . . . 6 ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ (card “ Pred( ≺ , 𝐴, 𝑥)) = ∅))
52 predss 6256 . . . . . . . . 9 Pred( ≺ , 𝐴, 𝑥) ⊆ 𝐴
53 sstr 3943 . . . . . . . . 9 ((Pred( ≺ , 𝐴, 𝑥) ⊆ 𝐴𝐴 ⊆ dom card) → Pred( ≺ , 𝐴, 𝑥) ⊆ dom card)
5452, 53mpan 690 . . . . . . . 8 (𝐴 ⊆ dom card → Pred( ≺ , 𝐴, 𝑥) ⊆ dom card)
55 fnimaeq0 6614 . . . . . . . 8 ((card Fn dom card ∧ Pred( ≺ , 𝐴, 𝑥) ⊆ dom card) → ((card “ Pred( ≺ , 𝐴, 𝑥)) = ∅ ↔ Pred( ≺ , 𝐴, 𝑥) = ∅))
564, 54, 55sylancr 587 . . . . . . 7 (𝐴 ⊆ dom card → ((card “ Pred( ≺ , 𝐴, 𝑥)) = ∅ ↔ Pred( ≺ , 𝐴, 𝑥) = ∅))
5756adantr 480 . . . . . 6 ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → ((card “ Pred( ≺ , 𝐴, 𝑥)) = ∅ ↔ Pred( ≺ , 𝐴, 𝑥) = ∅))
5851, 57bitrd 279 . . . . 5 ((𝐴 ⊆ dom card ∧ 𝑥 ∈ dom card) → (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ Pred( ≺ , 𝐴, 𝑥) = ∅))
5949, 58syldan 591 . . . 4 ((𝐴 ⊆ dom card ∧ 𝑥𝐴) → (Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ Pred( ≺ , 𝐴, 𝑥) = ∅))
6059rexbidva 3154 . . 3 (𝐴 ⊆ dom card → (∃𝑥𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ ∃𝑥𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅))
6160adantr 480 . 2 ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴 Pred( E , (card “ 𝐴), (card‘𝑥)) = ∅ ↔ ∃𝑥𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅))
6248, 61mpbid 232 1 ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  {crab 3395  wss 3902  c0 4283   class class class wbr 5091   E cep 5515  dom cdm 5616  cima 5619  Predcpred 6247  Oncon0 6306   Fn wfn 6476  wf 6477  cfv 6481  cen 8866  csdm 8868  cardccrd 9825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-card 9829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator