| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9bbr | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 3 | 1, 2 | sylan9bb 509 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bimsc1 844 pm5.75 1030 sbcom2 2176 sbal1 2528 sbal2 2529 raaan2 4468 mpteq12f 5174 otthg 5423 dm0rn0 5863 fmptsng 7102 f1oiso 7285 mpoeq123 7418 elovmporab 7592 elovmporab1w 7593 elovmporab1 7594 ovmpt3rabdm 7605 elovmpt3rab1 7606 tfindsg 7791 findsg 7827 dfoprab4f 7988 opiota 7991 fmpox 7999 oalimcl 8475 oeeui 8517 nnmword 8548 isinf 9149 elfi 9297 brwdomn0 9455 alephval3 10001 dfac2b 10022 fin17 10285 isfin7-2 10287 ltmpi 10795 addclprlem1 10907 distrlem4pr 10917 1idpr 10920 qreccl 12867 0fz1 13444 zmodid2 13803 ccatrcl1 14502 eqwrds3 14868 divgcdcoprm0 16576 sscntz 19238 gexdvds 19496 rngcinv 20552 psdmvr 22084 cnprest 23204 txrest 23546 ptrescn 23554 flimrest 23898 txflf 23921 fclsrest 23939 tsmssubm 24058 mbfi1fseqlem4 25646 2sq2 27371 axcontlem7 28948 uhgreq12g 29043 nbuhgr2vtx1edgb 29330 wlkcomp 29609 uhgrwkspthlem2 29732 clwlkcomp 29757 wlknwwlksnbij 29866 hashecclwwlkn1 30057 umgrhashecclwwlk 30058 numclwwlk1lem2fo 30338 ubthlem1 30850 pjimai 32156 atcv1 32360 chirredi 32374 mplvrpmrhm 33577 bj-restsn 37126 fvineqsneu 37455 pibt2 37461 wl-sbcom2d-lem1 37603 wl-sbalnae 37606 ptrest 37658 poimirlem28 37687 heicant 37694 ftc1anclem1 37732 sbeqi 38198 ralbi12f 38199 iineq12f 38203 brcnvepres 38303 elrnressn 38311 tfsconcat0i 43437 nzss 44409 sinnpoly 46990 or2expropbilem1 47131 modmkpkne 47460 ich2exprop 47570 ichnreuop 47571 ichreuopeq 47572 reuopreuprim 47625 rngcinvALTV 48375 snlindsntorlem 48570 itscnhlc0xyqsol 48865 opndisj 49002 |
| Copyright terms: Public domain | W3C validator |