Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9bbr | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
3 | 1, 2 | sylan9bb 509 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
4 | 3 | ancoms 458 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: bimsc1 840 pm5.75 1025 sbcom2 2163 sbal1 2533 sbal2 2534 raaan2 4452 mpteq12f 5158 otthg 5394 fmptsng 7022 f1oiso 7202 mpoeq123 7325 elovmporab 7493 elovmporab1w 7494 elovmporab1 7495 ovmpt3rabdm 7506 elovmpt3rab1 7507 tfindsg 7682 findsg 7720 dfoprab4f 7869 opiota 7872 fmpox 7880 oalimcl 8353 oeeui 8395 nnmword 8426 isinf 8965 elfi 9102 brwdomn0 9258 alephval3 9797 dfac2b 9817 fin17 10081 isfin7-2 10083 ltmpi 10591 addclprlem1 10703 distrlem4pr 10713 1idpr 10716 qreccl 12638 0fz1 13205 zmodid2 13547 ccatrcl1 14227 eqwrds3 14604 divgcdcoprm0 16298 sscntz 18847 gexdvds 19104 cnprest 22348 txrest 22690 ptrescn 22698 flimrest 23042 txflf 23065 fclsrest 23083 tsmssubm 23202 mbfi1fseqlem4 24788 2sq2 26486 axcontlem7 27241 uhgreq12g 27338 nbuhgr2vtx1edgb 27622 wlkcomp 27900 uhgrwkspthlem2 28023 clwlkcomp 28048 wlknwwlksnbij 28154 hashecclwwlkn1 28342 umgrhashecclwwlk 28343 numclwwlk1lem2fo 28623 ubthlem1 29133 pjimai 30439 atcv1 30643 chirredi 30657 bj-restsn 35180 fvineqsneu 35509 pibt2 35515 wl-sbcom2d-lem1 35641 wl-sbalnae 35644 ptrest 35703 poimirlem28 35732 heicant 35739 ftc1anclem1 35777 sbeqi 36244 ralbi12f 36245 iineq12f 36249 brcnvepres 36333 nzss 41824 or2expropbilem1 44413 ich2exprop 44811 ichnreuop 44812 ichreuopeq 44813 reuopreuprim 44866 rngcinv 45427 rngcinvALTV 45439 ringcinv 45478 ringcinvALTV 45502 snlindsntorlem 45699 itscnhlc0xyqsol 45999 opndisj 46084 |
Copyright terms: Public domain | W3C validator |