| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9bbr | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 3 | 1, 2 | sylan9bb 509 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bimsc1 844 pm5.75 1030 sbcom2 2174 sbal1 2526 sbal2 2527 raaan2 4484 mpteq12f 5192 otthg 5445 fmptsng 7142 f1oiso 7326 mpoeq123 7461 elovmporab 7635 elovmporab1w 7636 elovmporab1 7637 ovmpt3rabdm 7648 elovmpt3rab1 7649 tfindsg 7837 findsg 7873 dfoprab4f 8035 opiota 8038 fmpox 8046 oalimcl 8524 oeeui 8566 nnmword 8597 isinf 9207 isinfOLD 9208 elfi 9364 brwdomn0 9522 alephval3 10063 dfac2b 10084 fin17 10347 isfin7-2 10349 ltmpi 10857 addclprlem1 10969 distrlem4pr 10979 1idpr 10982 qreccl 12928 0fz1 13505 zmodid2 13861 ccatrcl1 14559 eqwrds3 14927 divgcdcoprm0 16635 sscntz 19258 gexdvds 19514 rngcinv 20546 psdmvr 22056 cnprest 23176 txrest 23518 ptrescn 23526 flimrest 23870 txflf 23893 fclsrest 23911 tsmssubm 24030 mbfi1fseqlem4 25619 2sq2 27344 axcontlem7 28897 uhgreq12g 28992 nbuhgr2vtx1edgb 29279 wlkcomp 29559 uhgrwkspthlem2 29684 clwlkcomp 29709 wlknwwlksnbij 29818 hashecclwwlkn1 30006 umgrhashecclwwlk 30007 numclwwlk1lem2fo 30287 ubthlem1 30799 pjimai 32105 atcv1 32309 chirredi 32323 bj-restsn 37070 fvineqsneu 37399 pibt2 37405 wl-sbcom2d-lem1 37547 wl-sbalnae 37550 ptrest 37613 poimirlem28 37642 heicant 37649 ftc1anclem1 37687 sbeqi 38153 ralbi12f 38154 iineq12f 38158 brcnvepres 38256 elrnressn 38262 tfsconcat0i 43334 nzss 44306 sinnpoly 46892 or2expropbilem1 47033 modmkpkne 47362 ich2exprop 47472 ichnreuop 47473 ichreuopeq 47474 reuopreuprim 47527 rngcinvALTV 48264 snlindsntorlem 48459 itscnhlc0xyqsol 48754 opndisj 48891 |
| Copyright terms: Public domain | W3C validator |