| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9bbr | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 3 | 1, 2 | sylan9bb 509 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bimsc1 844 pm5.75 1030 sbcom2 2174 sbal1 2533 sbal2 2534 raaan2 4501 mpteq12f 5210 otthg 5465 fmptsng 7165 f1oiso 7349 mpoeq123 7484 elovmporab 7658 elovmporab1w 7659 elovmporab1 7660 ovmpt3rabdm 7671 elovmpt3rab1 7672 tfindsg 7861 findsg 7898 dfoprab4f 8060 opiota 8063 fmpox 8071 oalimcl 8577 oeeui 8619 nnmword 8650 isinf 9273 isinfOLD 9274 elfi 9430 brwdomn0 9588 alephval3 10129 dfac2b 10150 fin17 10413 isfin7-2 10415 ltmpi 10923 addclprlem1 11035 distrlem4pr 11045 1idpr 11048 qreccl 12990 0fz1 13566 zmodid2 13921 ccatrcl1 14617 eqwrds3 14985 divgcdcoprm0 16689 sscntz 19314 gexdvds 19570 rngcinv 20602 psdmvr 22112 cnprest 23232 txrest 23574 ptrescn 23582 flimrest 23926 txflf 23949 fclsrest 23967 tsmssubm 24086 mbfi1fseqlem4 25676 2sq2 27401 axcontlem7 28954 uhgreq12g 29049 nbuhgr2vtx1edgb 29336 wlkcomp 29616 uhgrwkspthlem2 29741 clwlkcomp 29766 wlknwwlksnbij 29875 hashecclwwlkn1 30063 umgrhashecclwwlk 30064 numclwwlk1lem2fo 30344 ubthlem1 30856 pjimai 32162 atcv1 32366 chirredi 32380 bj-restsn 37105 fvineqsneu 37434 pibt2 37440 wl-sbcom2d-lem1 37582 wl-sbalnae 37585 ptrest 37648 poimirlem28 37677 heicant 37684 ftc1anclem1 37722 sbeqi 38188 ralbi12f 38189 iineq12f 38193 brcnvepres 38290 elrnressn 38296 tfsconcat0i 43344 nzss 44316 or2expropbilem1 47041 ich2exprop 47465 ichnreuop 47466 ichreuopeq 47467 reuopreuprim 47520 rngcinvALTV 48231 snlindsntorlem 48426 itscnhlc0xyqsol 48725 opndisj 48857 |
| Copyright terms: Public domain | W3C validator |