Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9bbr | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
3 | 1, 2 | sylan9bb 510 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
4 | 3 | ancoms 459 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: bimsc1 841 pm5.75 1026 sbcom2 2161 sbal1 2533 sbal2 2534 raaan2 4455 mpteq12f 5162 otthg 5400 fmptsng 7040 f1oiso 7222 mpoeq123 7347 elovmporab 7515 elovmporab1w 7516 elovmporab1 7517 ovmpt3rabdm 7528 elovmpt3rab1 7529 tfindsg 7707 findsg 7746 dfoprab4f 7896 opiota 7899 fmpox 7907 oalimcl 8391 oeeui 8433 nnmword 8464 isinf 9036 elfi 9172 brwdomn0 9328 alephval3 9866 dfac2b 9886 fin17 10150 isfin7-2 10152 ltmpi 10660 addclprlem1 10772 distrlem4pr 10782 1idpr 10785 qreccl 12709 0fz1 13276 zmodid2 13619 ccatrcl1 14299 eqwrds3 14676 divgcdcoprm0 16370 sscntz 18932 gexdvds 19189 cnprest 22440 txrest 22782 ptrescn 22790 flimrest 23134 txflf 23157 fclsrest 23175 tsmssubm 23294 mbfi1fseqlem4 24883 2sq2 26581 axcontlem7 27338 uhgreq12g 27435 nbuhgr2vtx1edgb 27719 wlkcomp 27998 uhgrwkspthlem2 28122 clwlkcomp 28147 wlknwwlksnbij 28253 hashecclwwlkn1 28441 umgrhashecclwwlk 28442 numclwwlk1lem2fo 28722 ubthlem1 29232 pjimai 30538 atcv1 30742 chirredi 30756 bj-restsn 35253 fvineqsneu 35582 pibt2 35588 wl-sbcom2d-lem1 35714 wl-sbalnae 35717 ptrest 35776 poimirlem28 35805 heicant 35812 ftc1anclem1 35850 sbeqi 36317 ralbi12f 36318 iineq12f 36322 brcnvepres 36406 nzss 41935 or2expropbilem1 44526 ich2exprop 44923 ichnreuop 44924 ichreuopeq 44925 reuopreuprim 44978 rngcinv 45539 rngcinvALTV 45551 ringcinv 45590 ringcinvALTV 45614 snlindsntorlem 45811 itscnhlc0xyqsol 46111 opndisj 46196 |
Copyright terms: Public domain | W3C validator |