| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9bbr | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 3 | 1, 2 | sylan9bb 509 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bimsc1 844 pm5.75 1030 sbcom2 2174 sbal1 2526 sbal2 2527 raaan2 4472 mpteq12f 5177 otthg 5428 fmptsng 7104 f1oiso 7288 mpoeq123 7421 elovmporab 7595 elovmporab1w 7596 elovmporab1 7597 ovmpt3rabdm 7608 elovmpt3rab1 7609 tfindsg 7794 findsg 7830 dfoprab4f 7991 opiota 7994 fmpox 8002 oalimcl 8478 oeeui 8520 nnmword 8551 isinf 9154 elfi 9303 brwdomn0 9461 alephval3 10004 dfac2b 10025 fin17 10288 isfin7-2 10290 ltmpi 10798 addclprlem1 10910 distrlem4pr 10920 1idpr 10923 qreccl 12870 0fz1 13447 zmodid2 13803 ccatrcl1 14501 eqwrds3 14868 divgcdcoprm0 16576 sscntz 19205 gexdvds 19463 rngcinv 20522 psdmvr 22054 cnprest 23174 txrest 23516 ptrescn 23524 flimrest 23868 txflf 23891 fclsrest 23909 tsmssubm 24028 mbfi1fseqlem4 25617 2sq2 27342 axcontlem7 28915 uhgreq12g 29010 nbuhgr2vtx1edgb 29297 wlkcomp 29576 uhgrwkspthlem2 29699 clwlkcomp 29724 wlknwwlksnbij 29833 hashecclwwlkn1 30021 umgrhashecclwwlk 30022 numclwwlk1lem2fo 30302 ubthlem1 30814 pjimai 32120 atcv1 32324 chirredi 32338 bj-restsn 37066 fvineqsneu 37395 pibt2 37401 wl-sbcom2d-lem1 37543 wl-sbalnae 37546 ptrest 37609 poimirlem28 37638 heicant 37645 ftc1anclem1 37683 sbeqi 38149 ralbi12f 38150 iineq12f 38154 brcnvepres 38252 elrnressn 38258 tfsconcat0i 43328 nzss 44300 sinnpoly 46885 or2expropbilem1 47026 modmkpkne 47355 ich2exprop 47465 ichnreuop 47466 ichreuopeq 47467 reuopreuprim 47520 rngcinvALTV 48270 snlindsntorlem 48465 itscnhlc0xyqsol 48760 opndisj 48897 |
| Copyright terms: Public domain | W3C validator |