![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9bbr | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
3 | 1, 2 | sylan9bb 509 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
4 | 3 | ancoms 458 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: bimsc1 844 pm5.75 1030 sbcom2 2171 sbal1 2531 sbal2 2532 raaan2 4527 mpteq12f 5236 otthg 5496 fmptsng 7188 f1oiso 7371 mpoeq123 7505 elovmporab 7679 elovmporab1w 7680 elovmporab1 7681 ovmpt3rabdm 7692 elovmpt3rab1 7693 tfindsg 7882 findsg 7920 dfoprab4f 8080 opiota 8083 fmpox 8091 oalimcl 8597 oeeui 8639 nnmword 8670 isinf 9294 isinfOLD 9295 elfi 9451 brwdomn0 9607 alephval3 10148 dfac2b 10169 fin17 10432 isfin7-2 10434 ltmpi 10942 addclprlem1 11054 distrlem4pr 11064 1idpr 11067 qreccl 13009 0fz1 13581 zmodid2 13936 ccatrcl1 14629 eqwrds3 14997 divgcdcoprm0 16699 sscntz 19357 gexdvds 19617 rngcinv 20654 cnprest 23313 txrest 23655 ptrescn 23663 flimrest 24007 txflf 24030 fclsrest 24048 tsmssubm 24167 mbfi1fseqlem4 25768 2sq2 27492 axcontlem7 29000 uhgreq12g 29097 nbuhgr2vtx1edgb 29384 wlkcomp 29664 uhgrwkspthlem2 29787 clwlkcomp 29812 wlknwwlksnbij 29918 hashecclwwlkn1 30106 umgrhashecclwwlk 30107 numclwwlk1lem2fo 30387 ubthlem1 30899 pjimai 32205 atcv1 32409 chirredi 32423 bj-restsn 37065 fvineqsneu 37394 pibt2 37400 wl-sbcom2d-lem1 37540 wl-sbalnae 37543 ptrest 37606 poimirlem28 37635 heicant 37642 ftc1anclem1 37680 sbeqi 38146 ralbi12f 38147 iineq12f 38151 brcnvepres 38249 elrnressn 38255 tfsconcat0i 43335 nzss 44313 or2expropbilem1 46982 ich2exprop 47396 ichnreuop 47397 ichreuopeq 47398 reuopreuprim 47451 rngcinvALTV 48120 snlindsntorlem 48316 itscnhlc0xyqsol 48615 opndisj 48699 |
Copyright terms: Public domain | W3C validator |