| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9bbr | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 3 | 1, 2 | sylan9bb 509 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bimsc1 844 pm5.75 1030 sbcom2 2174 sbal1 2526 sbal2 2527 raaan2 4480 mpteq12f 5187 otthg 5440 fmptsng 7124 f1oiso 7308 mpoeq123 7441 elovmporab 7615 elovmporab1w 7616 elovmporab1 7617 ovmpt3rabdm 7628 elovmpt3rab1 7629 tfindsg 7817 findsg 7853 dfoprab4f 8014 opiota 8017 fmpox 8025 oalimcl 8501 oeeui 8543 nnmword 8574 isinf 9183 isinfOLD 9184 elfi 9340 brwdomn0 9498 alephval3 10039 dfac2b 10060 fin17 10323 isfin7-2 10325 ltmpi 10833 addclprlem1 10945 distrlem4pr 10955 1idpr 10958 qreccl 12904 0fz1 13481 zmodid2 13837 ccatrcl1 14535 eqwrds3 14903 divgcdcoprm0 16611 sscntz 19240 gexdvds 19498 rngcinv 20557 psdmvr 22089 cnprest 23209 txrest 23551 ptrescn 23559 flimrest 23903 txflf 23926 fclsrest 23944 tsmssubm 24063 mbfi1fseqlem4 25652 2sq2 27377 axcontlem7 28950 uhgreq12g 29045 nbuhgr2vtx1edgb 29332 wlkcomp 29611 uhgrwkspthlem2 29734 clwlkcomp 29759 wlknwwlksnbij 29868 hashecclwwlkn1 30056 umgrhashecclwwlk 30057 numclwwlk1lem2fo 30337 ubthlem1 30849 pjimai 32155 atcv1 32359 chirredi 32373 bj-restsn 37063 fvineqsneu 37392 pibt2 37398 wl-sbcom2d-lem1 37540 wl-sbalnae 37543 ptrest 37606 poimirlem28 37635 heicant 37642 ftc1anclem1 37680 sbeqi 38146 ralbi12f 38147 iineq12f 38151 brcnvepres 38249 elrnressn 38255 tfsconcat0i 43327 nzss 44299 sinnpoly 46885 or2expropbilem1 47026 modmkpkne 47355 ich2exprop 47465 ichnreuop 47466 ichreuopeq 47467 reuopreuprim 47520 rngcinvALTV 48257 snlindsntorlem 48452 itscnhlc0xyqsol 48747 opndisj 48884 |
| Copyright terms: Public domain | W3C validator |