![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9bbr | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
3 | 1, 2 | sylan9bb 509 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
4 | 3 | ancoms 458 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: bimsc1 843 pm5.75 1029 sbcom2 2174 sbal1 2536 sbal2 2537 raaan2 4544 mpteq12f 5254 otthg 5505 fmptsng 7202 f1oiso 7387 mpoeq123 7522 elovmporab 7696 elovmporab1w 7697 elovmporab1 7698 ovmpt3rabdm 7709 elovmpt3rab1 7710 tfindsg 7898 findsg 7937 dfoprab4f 8097 opiota 8100 fmpox 8108 oalimcl 8616 oeeui 8658 nnmword 8689 isinf 9323 isinfOLD 9324 elfi 9482 brwdomn0 9638 alephval3 10179 dfac2b 10200 fin17 10463 isfin7-2 10465 ltmpi 10973 addclprlem1 11085 distrlem4pr 11095 1idpr 11098 qreccl 13034 0fz1 13604 zmodid2 13950 ccatrcl1 14642 eqwrds3 15010 divgcdcoprm0 16712 sscntz 19366 gexdvds 19626 rngcinv 20659 cnprest 23318 txrest 23660 ptrescn 23668 flimrest 24012 txflf 24035 fclsrest 24053 tsmssubm 24172 mbfi1fseqlem4 25773 2sq2 27495 axcontlem7 29003 uhgreq12g 29100 nbuhgr2vtx1edgb 29387 wlkcomp 29667 uhgrwkspthlem2 29790 clwlkcomp 29815 wlknwwlksnbij 29921 hashecclwwlkn1 30109 umgrhashecclwwlk 30110 numclwwlk1lem2fo 30390 ubthlem1 30902 pjimai 32208 atcv1 32412 chirredi 32426 bj-restsn 37048 fvineqsneu 37377 pibt2 37383 wl-sbcom2d-lem1 37513 wl-sbalnae 37516 ptrest 37579 poimirlem28 37608 heicant 37615 ftc1anclem1 37653 sbeqi 38119 ralbi12f 38120 iineq12f 38124 brcnvepres 38223 elrnressn 38229 tfsconcat0i 43307 nzss 44286 or2expropbilem1 46947 ich2exprop 47345 ichnreuop 47346 ichreuopeq 47347 reuopreuprim 47400 rngcinvALTV 47999 snlindsntorlem 48199 itscnhlc0xyqsol 48499 opndisj 48582 |
Copyright terms: Public domain | W3C validator |