| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9bbr | Structured version Visualization version GIF version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
| 3 | 1, 2 | sylan9bb 509 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: bimsc1 844 pm5.75 1030 sbcom2 2172 sbal1 2532 sbal2 2533 raaan2 4520 mpteq12f 5229 otthg 5489 fmptsng 7189 f1oiso 7372 mpoeq123 7506 elovmporab 7680 elovmporab1w 7681 elovmporab1 7682 ovmpt3rabdm 7693 elovmpt3rab1 7694 tfindsg 7883 findsg 7920 dfoprab4f 8082 opiota 8085 fmpox 8093 oalimcl 8599 oeeui 8641 nnmword 8672 isinf 9297 isinfOLD 9298 elfi 9454 brwdomn0 9610 alephval3 10151 dfac2b 10172 fin17 10435 isfin7-2 10437 ltmpi 10945 addclprlem1 11057 distrlem4pr 11067 1idpr 11070 qreccl 13012 0fz1 13585 zmodid2 13940 ccatrcl1 14633 eqwrds3 15001 divgcdcoprm0 16703 sscntz 19345 gexdvds 19603 rngcinv 20638 psdmvr 22174 cnprest 23298 txrest 23640 ptrescn 23648 flimrest 23992 txflf 24015 fclsrest 24033 tsmssubm 24152 mbfi1fseqlem4 25754 2sq2 27478 axcontlem7 28986 uhgreq12g 29083 nbuhgr2vtx1edgb 29370 wlkcomp 29650 uhgrwkspthlem2 29775 clwlkcomp 29800 wlknwwlksnbij 29909 hashecclwwlkn1 30097 umgrhashecclwwlk 30098 numclwwlk1lem2fo 30378 ubthlem1 30890 pjimai 32196 atcv1 32400 chirredi 32414 bj-restsn 37084 fvineqsneu 37413 pibt2 37419 wl-sbcom2d-lem1 37561 wl-sbalnae 37564 ptrest 37627 poimirlem28 37656 heicant 37663 ftc1anclem1 37701 sbeqi 38167 ralbi12f 38168 iineq12f 38172 brcnvepres 38269 elrnressn 38275 tfsconcat0i 43363 nzss 44341 or2expropbilem1 47049 ich2exprop 47463 ichnreuop 47464 ichreuopeq 47465 reuopreuprim 47518 rngcinvALTV 48197 snlindsntorlem 48392 itscnhlc0xyqsol 48691 opndisj 48807 |
| Copyright terms: Public domain | W3C validator |