![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9bbr | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
3 | 1, 2 | sylan9bb 511 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
4 | 3 | ancoms 460 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: bimsc1 843 pm5.75 1028 sbcom2 2162 sbal1 2528 sbal2 2529 raaan2 4525 mpteq12f 5237 otthg 5486 fmptsng 7166 f1oiso 7348 mpoeq123 7481 elovmporab 7652 elovmporab1w 7653 elovmporab1 7654 ovmpt3rabdm 7665 elovmpt3rab1 7666 tfindsg 7850 findsg 7890 dfoprab4f 8042 opiota 8045 fmpox 8053 oalimcl 8560 oeeui 8602 nnmword 8633 isinf 9260 isinfOLD 9261 elfi 9408 brwdomn0 9564 alephval3 10105 dfac2b 10125 fin17 10389 isfin7-2 10391 ltmpi 10899 addclprlem1 11011 distrlem4pr 11021 1idpr 11024 qreccl 12953 0fz1 13521 zmodid2 13864 ccatrcl1 14544 eqwrds3 14912 divgcdcoprm0 16602 sscntz 19190 gexdvds 19452 cnprest 22793 txrest 23135 ptrescn 23143 flimrest 23487 txflf 23510 fclsrest 23528 tsmssubm 23647 mbfi1fseqlem4 25236 2sq2 26936 axcontlem7 28228 uhgreq12g 28325 nbuhgr2vtx1edgb 28609 wlkcomp 28888 uhgrwkspthlem2 29011 clwlkcomp 29036 wlknwwlksnbij 29142 hashecclwwlkn1 29330 umgrhashecclwwlk 29331 numclwwlk1lem2fo 29611 ubthlem1 30123 pjimai 31429 atcv1 31633 chirredi 31647 bj-restsn 35963 fvineqsneu 36292 pibt2 36298 wl-sbcom2d-lem1 36424 wl-sbalnae 36427 ptrest 36487 poimirlem28 36516 heicant 36523 ftc1anclem1 36561 sbeqi 37027 ralbi12f 37028 iineq12f 37032 brcnvepres 37135 elrnressn 37141 tfsconcat0i 42095 nzss 43076 or2expropbilem1 45742 ich2exprop 46139 ichnreuop 46140 ichreuopeq 46141 reuopreuprim 46194 rngcinv 46879 rngcinvALTV 46891 snlindsntorlem 47151 itscnhlc0xyqsol 47451 opndisj 47535 |
Copyright terms: Public domain | W3C validator |