![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9bbr | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bbr.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bbr | ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bbr.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | sylan9bbr.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
3 | 1, 2 | sylan9bb 508 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
4 | 3 | ancoms 457 | 1 ⊢ ((𝜃 ∧ 𝜑) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: bimsc1 840 pm5.75 1025 sbcom2 2159 sbal1 2525 sbal2 2526 raaan2 4523 mpteq12f 5235 otthg 5484 fmptsng 7167 f1oiso 7350 mpoeq123 7483 elovmporab 7654 elovmporab1w 7655 elovmporab1 7656 ovmpt3rabdm 7667 elovmpt3rab1 7668 tfindsg 7852 findsg 7892 dfoprab4f 8044 opiota 8047 fmpox 8055 oalimcl 8562 oeeui 8604 nnmword 8635 isinf 9262 isinfOLD 9263 elfi 9410 brwdomn0 9566 alephval3 10107 dfac2b 10127 fin17 10391 isfin7-2 10393 ltmpi 10901 addclprlem1 11013 distrlem4pr 11023 1idpr 11026 qreccl 12957 0fz1 13525 zmodid2 13868 ccatrcl1 14548 eqwrds3 14916 divgcdcoprm0 16606 sscntz 19231 gexdvds 19493 cnprest 23013 txrest 23355 ptrescn 23363 flimrest 23707 txflf 23730 fclsrest 23748 tsmssubm 23867 mbfi1fseqlem4 25468 2sq2 27172 axcontlem7 28495 uhgreq12g 28592 nbuhgr2vtx1edgb 28876 wlkcomp 29155 uhgrwkspthlem2 29278 clwlkcomp 29303 wlknwwlksnbij 29409 hashecclwwlkn1 29597 umgrhashecclwwlk 29598 numclwwlk1lem2fo 29878 ubthlem1 30390 pjimai 31696 atcv1 31900 chirredi 31914 bj-restsn 36266 fvineqsneu 36595 pibt2 36601 wl-sbcom2d-lem1 36727 wl-sbalnae 36730 ptrest 36790 poimirlem28 36819 heicant 36826 ftc1anclem1 36864 sbeqi 37330 ralbi12f 37331 iineq12f 37335 brcnvepres 37438 elrnressn 37444 tfsconcat0i 42397 nzss 43378 or2expropbilem1 46040 ich2exprop 46437 ichnreuop 46438 ichreuopeq 46439 reuopreuprim 46492 rngcinv 46967 rngcinvALTV 46979 snlindsntorlem 47238 itscnhlc0xyqsol 47538 opndisj 47622 |
Copyright terms: Public domain | W3C validator |