Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancr | Structured version Visualization version GIF version |
Description: Conjoin antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
ancr | ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜓 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.21 472 | . 2 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜑))) | |
2 | 1 | a2i 14 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜓 ∧ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: bimsc1 841 reupick2 4254 intmin4 4908 bnj1098 32763 lukshef-ax2 34604 bj-opelid 35327 poimirlem25 35802 pm14.122b 42041 |
Copyright terms: Public domain | W3C validator |