MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bm1.3ii Structured version   Visualization version   GIF version

Theorem bm1.3ii 5221
Description: Convert implication to equivalence using the Separation Scheme (Aussonderung) ax-sep 5218. Similar to Theorem 1.3(ii) of [BellMachover] p. 463. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
bm1.3ii.1 𝑥𝑦(𝜑𝑦𝑥)
Assertion
Ref Expression
bm1.3ii 𝑥𝑦(𝑦𝑥𝜑)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem bm1.3ii
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 19.42v 1958 . . 3 (∃𝑥(∀𝑦(𝜑𝑦𝑧) ∧ ∀𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))) ↔ (∀𝑦(𝜑𝑦𝑧) ∧ ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))))
2 bimsc1 840 . . . . 5 (((𝜑𝑦𝑧) ∧ (𝑦𝑥 ↔ (𝑦𝑧𝜑))) → (𝑦𝑥𝜑))
32alanimi 1820 . . . 4 ((∀𝑦(𝜑𝑦𝑧) ∧ ∀𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))) → ∀𝑦(𝑦𝑥𝜑))
43eximi 1838 . . 3 (∃𝑥(∀𝑦(𝜑𝑦𝑧) ∧ ∀𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))) → ∃𝑥𝑦(𝑦𝑥𝜑))
51, 4sylbir 234 . 2 ((∀𝑦(𝜑𝑦𝑧) ∧ ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))) → ∃𝑥𝑦(𝑦𝑥𝜑))
6 bm1.3ii.1 . . . 4 𝑥𝑦(𝜑𝑦𝑥)
7 elequ2 2123 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑥𝑦𝑧))
87imbi2d 340 . . . . . 6 (𝑥 = 𝑧 → ((𝜑𝑦𝑥) ↔ (𝜑𝑦𝑧)))
98albidv 1924 . . . . 5 (𝑥 = 𝑧 → (∀𝑦(𝜑𝑦𝑥) ↔ ∀𝑦(𝜑𝑦𝑧)))
109cbvexvw 2041 . . . 4 (∃𝑥𝑦(𝜑𝑦𝑥) ↔ ∃𝑧𝑦(𝜑𝑦𝑧))
116, 10mpbi 229 . . 3 𝑧𝑦(𝜑𝑦𝑧)
12 ax-sep 5218 . . 3 𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑))
1311, 12exan 1866 . 2 𝑧(∀𝑦(𝜑𝑦𝑧) ∧ ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝑧𝜑)))
145, 13exlimiiv 1935 1 𝑥𝑦(𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  axpow3  5286  vpwex  5295  axprlem4  5344  zfpair2  5348  axun2  7568  uniex2  7569
  Copyright terms: Public domain W3C validator