MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcai Structured version   Visualization version   GIF version

Theorem jcai 518
Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.)
Hypotheses
Ref Expression
jcai.1 (𝜑𝜓)
jcai.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
jcai (𝜑 → (𝜓𝜒))

Proof of Theorem jcai
StepHypRef Expression
1 jcai.1 . 2 (𝜑𝜓)
2 jcai.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2mpd 15 . 2 (𝜑𝜒)
41, 3jca 513 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  euan  2621  euanv  2624  reu6  3666  f1ocnv2d  7554  onfin2  9052  nnoddn2prm  16557  isinitoi  17759  istermoi  17760  iszeroi  17769  mpfrcl  21340  cpmatelimp  21906  cpmatelimp2  21908  f1o3d  31007  oddpwdc  32366  altopthsn  34308  bj-animbi  34784  volsupnfl  35866  mbfresfi  35867  qirropth  40767  brcofffn  41679  lighneal  45121
  Copyright terms: Public domain W3C validator