![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jcai | Structured version Visualization version GIF version |
Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
jcai.1 | ⊢ (𝜑 → 𝜓) |
jcai.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
jcai | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcai.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jcai.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpd 15 | . 2 ⊢ (𝜑 → 𝜒) |
4 | 1, 3 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: euan 2624 euanv 2627 reu6 3748 f1ocnv2d 7703 onfin2 9294 nnoddn2prm 16858 isinitoi 18066 istermoi 18067 iszeroi 18076 mpfrcl 22132 cpmatelimp 22739 cpmatelimp2 22741 f1o3d 32646 oddpwdc 34319 altopthsn 35925 bj-animbi 36525 volsupnfl 37625 mbfresfi 37626 qirropth 42864 oacl2g 43292 omabs2 43294 omcl2 43295 ofoafg 43316 ofoafo 43318 naddcnff 43324 naddcnffo 43326 brcofffn 43993 lighneal 47485 |
Copyright terms: Public domain | W3C validator |