MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcai Structured version   Visualization version   GIF version

Theorem jcai 516
Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.)
Hypotheses
Ref Expression
jcai.1 (𝜑𝜓)
jcai.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
jcai (𝜑 → (𝜓𝜒))

Proof of Theorem jcai
StepHypRef Expression
1 jcai.1 . 2 (𝜑𝜓)
2 jcai.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2mpd 15 . 2 (𝜑𝜒)
41, 3jca 511 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  euan  2618  euanv  2621  reu6  3681  f1ocnv2d  7605  onfin2  9132  nnoddn2prm  16725  isinitoi  17908  istermoi  17909  iszeroi  17918  mpfrcl  22021  cpmatelimp  22628  cpmatelimp2  22630  f1o3d  32610  oddpwdc  34388  altopthsn  36026  bj-animbi  36624  volsupnfl  37725  mbfresfi  37726  qirropth  43025  oacl2g  43447  omabs2  43449  omcl2  43450  ofoafg  43471  ofoafo  43473  naddcnff  43479  naddcnffo  43481  brcofffn  44148  lighneal  47735
  Copyright terms: Public domain W3C validator