MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcai Structured version   Visualization version   GIF version

Theorem jcai 520
Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.)
Hypotheses
Ref Expression
jcai.1 (𝜑𝜓)
jcai.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
jcai (𝜑 → (𝜓𝜒))

Proof of Theorem jcai
StepHypRef Expression
1 jcai.1 . 2 (𝜑𝜓)
2 jcai.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2mpd 15 . 2 (𝜑𝜒)
41, 3jca 515 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  euan  2622  euanv  2625  reu6  3639  f1ocnv2d  7458  onfin2  8871  nnoddn2prm  16364  isinitoi  17505  istermoi  17506  iszeroi  17515  mpfrcl  21045  cpmatelimp  21609  cpmatelimp2  21611  f1o3d  30681  oddpwdc  32033  altopthsn  34000  bj-animbi  34476  volsupnfl  35559  mbfresfi  35560  qirropth  40433  brcofffn  41318  lighneal  44736
  Copyright terms: Public domain W3C validator