|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > jcai | Structured version Visualization version GIF version | ||
| Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.) | 
| Ref | Expression | 
|---|---|
| jcai.1 | ⊢ (𝜑 → 𝜓) | 
| jcai.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| jcai | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | jcai.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jcai.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | mpd 15 | . 2 ⊢ (𝜑 → 𝜒) | 
| 4 | 1, 3 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: euan 2621 euanv 2624 reu6 3732 f1ocnv2d 7686 onfin2 9268 nnoddn2prm 16849 isinitoi 18044 istermoi 18045 iszeroi 18054 mpfrcl 22109 cpmatelimp 22718 cpmatelimp2 22720 f1o3d 32637 oddpwdc 34356 altopthsn 35962 bj-animbi 36560 volsupnfl 37672 mbfresfi 37673 qirropth 42919 oacl2g 43343 omabs2 43345 omcl2 43346 ofoafg 43367 ofoafo 43369 naddcnff 43375 naddcnffo 43377 brcofffn 44044 lighneal 47598 | 
| Copyright terms: Public domain | W3C validator |