| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jcai | Structured version Visualization version GIF version | ||
| Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| jcai.1 | ⊢ (𝜑 → 𝜓) |
| jcai.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| jcai | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcai.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jcai.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | mpd 15 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | 1, 3 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: euan 2616 euanv 2619 reu6 3685 f1ocnv2d 7599 onfin2 9125 nnoddn2prm 16720 isinitoi 17903 istermoi 17904 iszeroi 17913 mpfrcl 22018 cpmatelimp 22625 cpmatelimp2 22627 f1o3d 32603 oddpwdc 34362 altopthsn 35994 bj-animbi 36592 volsupnfl 37704 mbfresfi 37705 qirropth 42940 oacl2g 43362 omabs2 43364 omcl2 43365 ofoafg 43386 ofoafo 43388 naddcnff 43394 naddcnffo 43396 brcofffn 44063 lighneal 47641 |
| Copyright terms: Public domain | W3C validator |