MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcai Structured version   Visualization version   GIF version

Theorem jcai 516
Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.)
Hypotheses
Ref Expression
jcai.1 (𝜑𝜓)
jcai.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
jcai (𝜑 → (𝜓𝜒))

Proof of Theorem jcai
StepHypRef Expression
1 jcai.1 . 2 (𝜑𝜓)
2 jcai.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2mpd 15 . 2 (𝜑𝜒)
41, 3jca 511 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  euan  2621  euanv  2624  reu6  3732  f1ocnv2d  7686  onfin2  9268  nnoddn2prm  16849  isinitoi  18044  istermoi  18045  iszeroi  18054  mpfrcl  22109  cpmatelimp  22718  cpmatelimp2  22720  f1o3d  32637  oddpwdc  34356  altopthsn  35962  bj-animbi  36560  volsupnfl  37672  mbfresfi  37673  qirropth  42919  oacl2g  43343  omabs2  43345  omcl2  43346  ofoafg  43367  ofoafo  43369  naddcnff  43375  naddcnffo  43377  brcofffn  44044  lighneal  47598
  Copyright terms: Public domain W3C validator