MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcai Structured version   Visualization version   GIF version

Theorem jcai 516
Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.)
Hypotheses
Ref Expression
jcai.1 (𝜑𝜓)
jcai.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
jcai (𝜑 → (𝜓𝜒))

Proof of Theorem jcai
StepHypRef Expression
1 jcai.1 . 2 (𝜑𝜓)
2 jcai.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2mpd 15 . 2 (𝜑𝜒)
41, 3jca 511 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  euan  2620  euanv  2623  reu6  3709  f1ocnv2d  7660  onfin2  9240  nnoddn2prm  16831  isinitoi  18012  istermoi  18013  iszeroi  18022  mpfrcl  22043  cpmatelimp  22650  cpmatelimp2  22652  f1o3d  32605  oddpwdc  34386  altopthsn  35979  bj-animbi  36577  volsupnfl  37689  mbfresfi  37690  qirropth  42931  oacl2g  43354  omabs2  43356  omcl2  43357  ofoafg  43378  ofoafo  43380  naddcnff  43386  naddcnffo  43388  brcofffn  44055  lighneal  47625
  Copyright terms: Public domain W3C validator