MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcai Structured version   Visualization version   GIF version

Theorem jcai 516
Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.)
Hypotheses
Ref Expression
jcai.1 (𝜑𝜓)
jcai.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
jcai (𝜑 → (𝜓𝜒))

Proof of Theorem jcai
StepHypRef Expression
1 jcai.1 . 2 (𝜑𝜓)
2 jcai.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2mpd 15 . 2 (𝜑𝜒)
41, 3jca 511 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  euan  2624  euanv  2627  reu6  3664  f1ocnv2d  7513  onfin2  8977  nnoddn2prm  16493  isinitoi  17695  istermoi  17696  iszeroi  17705  mpfrcl  21276  cpmatelimp  21842  cpmatelimp2  21844  f1o3d  30941  oddpwdc  32300  altopthsn  34242  bj-animbi  34718  volsupnfl  35801  mbfresfi  35802  qirropth  40710  brcofffn  41594  lighneal  45015
  Copyright terms: Public domain W3C validator