MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcai Structured version   Visualization version   GIF version

Theorem jcai 516
Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.)
Hypotheses
Ref Expression
jcai.1 (𝜑𝜓)
jcai.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
jcai (𝜑 → (𝜓𝜒))

Proof of Theorem jcai
StepHypRef Expression
1 jcai.1 . 2 (𝜑𝜓)
2 jcai.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2mpd 15 . 2 (𝜑𝜒)
41, 3jca 511 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  euan  2614  euanv  2617  reu6  3697  f1ocnv2d  7642  onfin2  9180  nnoddn2prm  16782  isinitoi  17961  istermoi  17962  iszeroi  17971  mpfrcl  21992  cpmatelimp  22599  cpmatelimp2  22601  f1o3d  32551  oddpwdc  34345  altopthsn  35949  bj-animbi  36547  volsupnfl  37659  mbfresfi  37660  qirropth  42896  oacl2g  43319  omabs2  43321  omcl2  43322  ofoafg  43343  ofoafo  43345  naddcnff  43351  naddcnffo  43353  brcofffn  44020  lighneal  47612
  Copyright terms: Public domain W3C validator