Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jcai | Structured version Visualization version GIF version |
Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
jcai.1 | ⊢ (𝜑 → 𝜓) |
jcai.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
jcai | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcai.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jcai.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpd 15 | . 2 ⊢ (𝜑 → 𝜒) |
4 | 1, 3 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: euan 2624 euanv 2627 reu6 3664 f1ocnv2d 7513 onfin2 8977 nnoddn2prm 16493 isinitoi 17695 istermoi 17696 iszeroi 17705 mpfrcl 21276 cpmatelimp 21842 cpmatelimp2 21844 f1o3d 30941 oddpwdc 32300 altopthsn 34242 bj-animbi 34718 volsupnfl 35801 mbfresfi 35802 qirropth 40710 brcofffn 41594 lighneal 45015 |
Copyright terms: Public domain | W3C validator |