Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jcai | Structured version Visualization version GIF version |
Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
jcai.1 | ⊢ (𝜑 → 𝜓) |
jcai.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
jcai | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcai.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jcai.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpd 15 | . 2 ⊢ (𝜑 → 𝜒) |
4 | 1, 3 | jca 513 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: euan 2621 euanv 2624 reu6 3666 f1ocnv2d 7554 onfin2 9052 nnoddn2prm 16557 isinitoi 17759 istermoi 17760 iszeroi 17769 mpfrcl 21340 cpmatelimp 21906 cpmatelimp2 21908 f1o3d 31007 oddpwdc 32366 altopthsn 34308 bj-animbi 34784 volsupnfl 35866 mbfresfi 35867 qirropth 40767 brcofffn 41679 lighneal 45121 |
Copyright terms: Public domain | W3C validator |