MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcai Structured version   Visualization version   GIF version

Theorem jcai 518
Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.)
Hypotheses
Ref Expression
jcai.1 (𝜑𝜓)
jcai.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
jcai (𝜑 → (𝜓𝜒))

Proof of Theorem jcai
StepHypRef Expression
1 jcai.1 . 2 (𝜑𝜓)
2 jcai.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2mpd 15 . 2 (𝜑𝜒)
41, 3jca 513 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  euan  2618  euanv  2621  reu6  3723  f1ocnv2d  7659  onfin2  9231  nnoddn2prm  16744  isinitoi  17949  istermoi  17950  iszeroi  17959  mpfrcl  21648  cpmatelimp  22214  cpmatelimp2  22216  f1o3d  31851  oddpwdc  33353  altopthsn  34933  bj-animbi  35435  volsupnfl  36533  mbfresfi  36534  qirropth  41646  oacl2g  42080  omabs2  42082  omcl2  42083  ofoafg  42104  ofoafo  42106  naddcnff  42112  naddcnffo  42114  brcofffn  42782  lighneal  46279
  Copyright terms: Public domain W3C validator