| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jcai | Structured version Visualization version GIF version | ||
| Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| jcai.1 | ⊢ (𝜑 → 𝜓) |
| jcai.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| jcai | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcai.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jcai.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | mpd 15 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | 1, 3 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: euan 2615 euanv 2618 reu6 3700 f1ocnv2d 7645 onfin2 9186 nnoddn2prm 16789 isinitoi 17968 istermoi 17969 iszeroi 17978 mpfrcl 21999 cpmatelimp 22606 cpmatelimp2 22608 f1o3d 32558 oddpwdc 34352 altopthsn 35956 bj-animbi 36554 volsupnfl 37666 mbfresfi 37667 qirropth 42903 oacl2g 43326 omabs2 43328 omcl2 43329 ofoafg 43350 ofoafo 43352 naddcnff 43358 naddcnffo 43360 brcofffn 44027 lighneal 47616 |
| Copyright terms: Public domain | W3C validator |