| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jcai | Structured version Visualization version GIF version | ||
| Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| jcai.1 | ⊢ (𝜑 → 𝜓) |
| jcai.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| jcai | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcai.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jcai.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | mpd 15 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | 1, 3 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: euan 2620 euanv 2623 reu6 3709 f1ocnv2d 7660 onfin2 9240 nnoddn2prm 16831 isinitoi 18012 istermoi 18013 iszeroi 18022 mpfrcl 22043 cpmatelimp 22650 cpmatelimp2 22652 f1o3d 32605 oddpwdc 34386 altopthsn 35979 bj-animbi 36577 volsupnfl 37689 mbfresfi 37690 qirropth 42931 oacl2g 43354 omabs2 43356 omcl2 43357 ofoafg 43378 ofoafo 43380 naddcnff 43386 naddcnffo 43388 brcofffn 44055 lighneal 47625 |
| Copyright terms: Public domain | W3C validator |