| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jcai | Structured version Visualization version GIF version | ||
| Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| jcai.1 | ⊢ (𝜑 → 𝜓) |
| jcai.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| jcai | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcai.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jcai.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | mpd 15 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | 1, 3 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: euan 2618 euanv 2621 reu6 3681 f1ocnv2d 7605 onfin2 9132 nnoddn2prm 16725 isinitoi 17908 istermoi 17909 iszeroi 17918 mpfrcl 22021 cpmatelimp 22628 cpmatelimp2 22630 f1o3d 32610 oddpwdc 34388 altopthsn 36026 bj-animbi 36624 volsupnfl 37725 mbfresfi 37726 qirropth 43025 oacl2g 43447 omabs2 43449 omcl2 43450 ofoafg 43471 ofoafo 43473 naddcnff 43479 naddcnffo 43481 brcofffn 44148 lighneal 47735 |
| Copyright terms: Public domain | W3C validator |