| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jcai | Structured version Visualization version GIF version | ||
| Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| jcai.1 | ⊢ (𝜑 → 𝜓) |
| jcai.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| jcai | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcai.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | jcai.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | mpd 15 | . 2 ⊢ (𝜑 → 𝜒) |
| 4 | 1, 3 | jca 511 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: euan 2614 euanv 2617 reu6 3697 f1ocnv2d 7642 onfin2 9180 nnoddn2prm 16782 isinitoi 17961 istermoi 17962 iszeroi 17971 mpfrcl 21992 cpmatelimp 22599 cpmatelimp2 22601 f1o3d 32551 oddpwdc 34345 altopthsn 35949 bj-animbi 36547 volsupnfl 37659 mbfresfi 37660 qirropth 42896 oacl2g 43319 omabs2 43321 omcl2 43322 ofoafg 43343 ofoafo 43345 naddcnff 43351 naddcnffo 43353 brcofffn 44020 lighneal 47612 |
| Copyright terms: Public domain | W3C validator |