MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcai Structured version   Visualization version   GIF version

Theorem jcai 516
Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.)
Hypotheses
Ref Expression
jcai.1 (𝜑𝜓)
jcai.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
jcai (𝜑 → (𝜓𝜒))

Proof of Theorem jcai
StepHypRef Expression
1 jcai.1 . 2 (𝜑𝜓)
2 jcai.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2mpd 15 . 2 (𝜑𝜒)
41, 3jca 511 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  euan  2616  euanv  2619  reu6  3685  f1ocnv2d  7599  onfin2  9125  nnoddn2prm  16720  isinitoi  17903  istermoi  17904  iszeroi  17913  mpfrcl  22018  cpmatelimp  22625  cpmatelimp2  22627  f1o3d  32603  oddpwdc  34362  altopthsn  35994  bj-animbi  36592  volsupnfl  37704  mbfresfi  37705  qirropth  42940  oacl2g  43362  omabs2  43364  omcl2  43365  ofoafg  43386  ofoafo  43388  naddcnff  43394  naddcnffo  43396  brcofffn  44063  lighneal  47641
  Copyright terms: Public domain W3C validator