 Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ax12v3 Structured version   Visualization version   GIF version

Theorem bj-ax12v3 33012
 Description: A weak version of ax-12 2203 which is stronger than ax12v 2204. Note that if one assumes reflexivity of equality ⊢ 𝑥 = 𝑥 (equid 2097), then bj-ax12v3 33012 implies ax-5 1991 over modal logic K (substitute 𝑥 for 𝑦). See also bj-ax12v3ALT 33013. (Contributed by BJ, 6-Jul-2021.)
Assertion
Ref Expression
bj-ax12v3 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable group:   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bj-ax12v3
StepHypRef Expression
1 ax-5 1991 . 2 (𝜑 → ∀𝑦𝜑)
2 ax12 2460 . 2 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
31, 2syl5 34 1 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1629 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-10 2174  ax-12 2203  ax-13 2408 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-ex 1853  df-nf 1858 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator