Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ax12v3 Structured version   Visualization version   GIF version

Theorem bj-ax12v3 34794
Description: A weak version of ax-12 2173 which is stronger than ax12v 2174. Note that if one assumes reflexivity of equality 𝑥 = 𝑥 (equid 2016), then bj-ax12v3 34794 implies ax-5 1914 over modal logic K (substitute 𝑥 for 𝑦). See also bj-ax12v3ALT 34795. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ax12v3 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable group:   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bj-ax12v3
StepHypRef Expression
1 ax-5 1914 . 2 (𝜑 → ∀𝑦𝜑)
2 ax12 2423 . 2 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
31, 2syl5 34 1 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator