![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ax12v3ALT | Structured version Visualization version GIF version |
Description: Alternate proof of bj-ax12v3 33181. Uses axc11r 2376 and axc15 2429 instead of ax-12 2213. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-ax12v3ALT | ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 2006 | . . . 4 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | axc11r 2376 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥𝜑)) | |
3 | ala1 1909 | . . . 4 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
4 | 1, 2, 3 | syl56 36 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
5 | 4 | a1d 25 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
6 | axc15 2429 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | |
7 | 5, 6 | pm2.61i 177 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-10 2185 ax-12 2213 ax-13 2377 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-ex 1876 df-nf 1880 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |