Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ax6elem2 Structured version   Visualization version   GIF version

Theorem bj-ax6elem2 36633
Description: Lemma for bj-ax6e 36634. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ax6elem2 (∀𝑥 𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑧

Proof of Theorem bj-ax6elem2
StepHypRef Expression
1 ax6ev 1969 . . 3 𝑥 𝑥 = 𝑧
2 equeucl 2023 . . 3 (𝑥 = 𝑧 → (𝑦 = 𝑧𝑥 = 𝑦))
31, 2eximii 1835 . 2 𝑥(𝑦 = 𝑧𝑥 = 𝑦)
4319.35i 1877 1 (∀𝑥 𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778
This theorem is referenced by:  bj-ax6e  36634
  Copyright terms: Public domain W3C validator