Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ax6e Structured version   Visualization version   GIF version

Theorem bj-ax6e 34776
Description: Proof of ax6e 2383 (hence ax6 2384) from Tarski's system, ax-c9 36831, ax-c16 36833. Remark: ax-6 1972 is used only via its principal (unbundled) instance ax6v 1973. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-ax6e 𝑥 𝑥 = 𝑦

Proof of Theorem bj-ax6e
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 19.2 1981 . . . 4 (∀𝑥 𝑥 = 𝑦 → ∃𝑥 𝑥 = 𝑦)
21a1d 25 . . 3 (∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦))
3 bj-ax6elem1 34774 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
4 bj-ax6elem2 34775 . . . 4 (∀𝑥 𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦)
53, 4syl6 35 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦))
62, 5pm2.61i 182 . 2 (𝑦 = 𝑧 → ∃𝑥 𝑥 = 𝑦)
7 ax6evr 2019 . 2 𝑧 𝑦 = 𝑧
86, 7exlimiiv 1935 1 𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator