|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 19.35i | Structured version Visualization version GIF version | ||
| Description: Inference associated with 19.35 1877. (Contributed by NM, 21-Jun-1993.) | 
| Ref | Expression | 
|---|---|
| 19.35i.1 | ⊢ ∃𝑥(𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| 19.35i | ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.35i.1 | . 2 ⊢ ∃𝑥(𝜑 → 𝜓) | |
| 2 | 19.35 1877 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-ex 1780 | 
| This theorem is referenced by: 19.2 1976 spimedv 2197 ax6e 2388 spimed 2393 equvini 2460 equvel 2461 axrep4OLD 5286 zfcndrep 10654 bj-ax6elem2 36668 wl-exeq 37535 spd 49197 | 
| Copyright terms: Public domain | W3C validator |