Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.35i | Structured version Visualization version GIF version |
Description: Inference associated with 19.35 1884. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
19.35i.1 | ⊢ ∃𝑥(𝜑 → 𝜓) |
Ref | Expression |
---|---|
19.35i | ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35i.1 | . 2 ⊢ ∃𝑥(𝜑 → 𝜓) | |
2 | 19.35 1884 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 |
This theorem depends on definitions: df-bi 206 df-ex 1787 |
This theorem is referenced by: 19.2 1984 spimedv 2194 ax6e 2385 spimed 2390 equvini 2457 equvel 2458 axrep4 5219 zfcndrep 10369 bj-ax6elem2 34842 wl-exeq 35687 spd 46351 |
Copyright terms: Public domain | W3C validator |