| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.35i | Structured version Visualization version GIF version | ||
| Description: Inference associated with 19.35 1877. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| 19.35i.1 | ⊢ ∃𝑥(𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 19.35i | ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35i.1 | . 2 ⊢ ∃𝑥(𝜑 → 𝜓) | |
| 2 | 19.35 1877 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.2 1976 spimedv 2197 ax6e 2387 spimed 2392 equvini 2459 equvel 2460 axrep4OLD 5256 zfcndrep 10628 bj-ax6elem2 36685 wl-exeq 37552 spd 49542 |
| Copyright terms: Public domain | W3C validator |