Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.35i Structured version   Visualization version   GIF version

Theorem 19.35i 1880
 Description: Inference associated with 19.35 1879. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
19.35i.1 𝑥(𝜑𝜓)
Assertion
Ref Expression
19.35i (∀𝑥𝜑 → ∃𝑥𝜓)

Proof of Theorem 19.35i
StepHypRef Expression
1 19.35i.1 . 2 𝑥(𝜑𝜓)
2 19.35 1879 . 2 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
31, 2mpbi 233 1 (∀𝑥𝜑 → ∃𝑥𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1536  ∃wex 1781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811 This theorem depends on definitions:  df-bi 210  df-ex 1782 This theorem is referenced by:  spimehOLD  1976  19.2  1982  spimedv  2198  ax6e  2402  spimed  2407  equvini  2478  equviniOLD  2479  equvel  2480  axrep4  5168  zfcndrep  10013  bj-ax6elem2  34007  wl-exeq  34817  spd  44968
 Copyright terms: Public domain W3C validator