Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-axc14nf | Structured version Visualization version GIF version |
Description: Proof of a version of axc14 2464 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-axc14nf | ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑥 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nfeel2 34684 | . 2 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧 𝑥 ∈ 𝑡) | |
2 | elequ2 2129 | . 2 ⊢ (𝑡 = 𝑦 → (𝑥 ∈ 𝑡 ↔ 𝑥 ∈ 𝑦)) | |
3 | 1, 2 | bj-dvelimdv1 34682 | 1 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑥 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 Ⅎwnf 1790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-13 2373 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 |
This theorem is referenced by: bj-axc14 34686 |
Copyright terms: Public domain | W3C validator |