![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-axc14nf | Structured version Visualization version GIF version |
Description: Proof of a version of axc14 2461 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-axc14nf | ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑥 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nfeel2 36037 | . 2 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧 𝑥 ∈ 𝑡) | |
2 | elequ2 2120 | . 2 ⊢ (𝑡 = 𝑦 → (𝑥 ∈ 𝑡 ↔ 𝑥 ∈ 𝑦)) | |
3 | 1, 2 | bj-dvelimdv1 36035 | 1 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑥 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 Ⅎwnf 1784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-13 2370 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 |
This theorem is referenced by: bj-axc14 36039 |
Copyright terms: Public domain | W3C validator |