![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-axc14nf | Structured version Visualization version GIF version |
Description: Proof of a version of axc14 2443 using the "nonfree" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-axc14nf | ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑥 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nfeel2 33748 | . 2 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧 𝑥 ∈ 𝑡) | |
2 | elequ2 2096 | . 2 ⊢ (𝑡 = 𝑦 → (𝑥 ∈ 𝑡 ↔ 𝑥 ∈ 𝑦)) | |
3 | 1, 2 | bj-dvelimdv1 33746 | 1 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑥 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1520 Ⅎwnf 1765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 |
This theorem is referenced by: bj-axc14 33750 |
Copyright terms: Public domain | W3C validator |