Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfeel2 Structured version   Visualization version   GIF version

Theorem bj-nfeel2 36813
Description: Nonfreeness in a membership statement. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nfeel2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦𝑧)
Distinct variable group:   𝑥,𝑧

Proof of Theorem bj-nfeel2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . 2 𝑥 𝑡𝑧
2 elequ1 2115 . 2 (𝑡 = 𝑦 → (𝑡𝑧𝑦𝑧))
31, 2bj-dvelimv 36812 1 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦𝑧)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782
This theorem is referenced by:  bj-axc14nf  36814
  Copyright terms: Public domain W3C validator