Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbv1hv | Structured version Visualization version GIF version |
Description: Version of cbv1h 2404 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-cbv1hv.1 | ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) |
bj-cbv1hv.2 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
bj-cbv1hv.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
bj-cbv1hv | ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2155 | . 2 ⊢ Ⅎ𝑥∀𝑥∀𝑦𝜑 | |
2 | nfa2 2177 | . 2 ⊢ Ⅎ𝑦∀𝑥∀𝑦𝜑 | |
3 | 2sp 2186 | . . . 4 ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) | |
4 | bj-cbv1hv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (∀𝑥∀𝑦𝜑 → (𝜓 → ∀𝑦𝜓)) |
6 | 2, 5 | nf5d 2287 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → Ⅎ𝑦𝜓) |
7 | bj-cbv1hv.2 | . . . 4 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
8 | 3, 7 | syl 17 | . . 3 ⊢ (∀𝑥∀𝑦𝜑 → (𝜒 → ∀𝑥𝜒)) |
9 | 1, 8 | nf5d 2287 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → Ⅎ𝑥𝜒) |
10 | bj-cbv1hv.3 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) | |
11 | 3, 10 | syl 17 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
12 | 1, 2, 6, 9, 11 | cbv1v 2337 | 1 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-10 2144 ax-11 2161 ax-12 2178 |
This theorem depends on definitions: df-bi 210 df-or 847 df-ex 1787 df-nf 1791 |
This theorem is referenced by: bj-cbv2hv 34599 |
Copyright terms: Public domain | W3C validator |