| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbv1hv | Structured version Visualization version GIF version | ||
| Description: Version of cbv1h 2408 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-cbv1hv.1 | ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) |
| bj-cbv1hv.2 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
| bj-cbv1hv.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| bj-cbv1hv | ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 2150 | . 2 ⊢ Ⅎ𝑥∀𝑥∀𝑦𝜑 | |
| 2 | nfa2 2175 | . 2 ⊢ Ⅎ𝑦∀𝑥∀𝑦𝜑 | |
| 3 | 2sp 2185 | . . . 4 ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) | |
| 4 | bj-cbv1hv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (∀𝑥∀𝑦𝜑 → (𝜓 → ∀𝑦𝜓)) |
| 6 | 2, 5 | nf5d 2283 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → Ⅎ𝑦𝜓) |
| 7 | bj-cbv1hv.2 | . . . 4 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
| 8 | 3, 7 | syl 17 | . . 3 ⊢ (∀𝑥∀𝑦𝜑 → (𝜒 → ∀𝑥𝜒)) |
| 9 | 1, 8 | nf5d 2283 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → Ⅎ𝑥𝜒) |
| 10 | bj-cbv1hv.3 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) | |
| 11 | 3, 10 | syl 17 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
| 12 | 1, 2, 6, 9, 11 | cbv1v 2336 | 1 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: bj-cbv2hv 36732 |
| Copyright terms: Public domain | W3C validator |