![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-spimtv | Structured version Visualization version GIF version |
Description: Version of spimt 2384 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-spimtv | ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6ev 1972 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
2 | exim 1835 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥(𝜑 → 𝜓))) | |
3 | 1, 2 | mpi 20 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ∃𝑥(𝜑 → 𝜓)) |
4 | 19.35 1879 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
5 | 3, 4 | sylib 217 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
6 | 19.9t 2196 | . . 3 ⊢ (Ⅎ𝑥𝜓 → (∃𝑥𝜓 ↔ 𝜓)) | |
7 | 6 | biimpd 228 | . 2 ⊢ (Ⅎ𝑥𝜓 → (∃𝑥𝜓 → 𝜓)) |
8 | 5, 7 | sylan9r 508 | 1 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1780 Ⅎwnf 1784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-nf 1785 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |