Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-spimtv Structured version   Visualization version   GIF version

Theorem bj-spimtv 33223
Description: Version of spimt 2393 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-spimtv ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem bj-spimtv
StepHypRef Expression
1 ax6ev 2074 . . . 4 𝑥 𝑥 = 𝑦
2 exim 1929 . . . 4 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥(𝜑𝜓)))
31, 2mpi 20 . . 3 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → ∃𝑥(𝜑𝜓))
4 19.35 1977 . . 3 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
53, 4sylib 210 . 2 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → (∀𝑥𝜑 → ∃𝑥𝜓))
6 19.9t 2238 . . 3 (Ⅎ𝑥𝜓 → (∃𝑥𝜓𝜓))
76biimpd 221 . 2 (Ⅎ𝑥𝜓 → (∃𝑥𝜓𝜓))
85, 7sylan9r 505 1 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wal 1651  wex 1875  wnf 1879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-12 2213
This theorem depends on definitions:  df-bi 199  df-an 386  df-ex 1876  df-nf 1880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator