Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ceqsalgvALT Structured version   Visualization version   GIF version

Theorem bj-ceqsalgvALT 36858
Description: Alternate proof of bj-ceqsalgv 36857. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bj-ceqsalgv.1 𝑥𝜓
bj-ceqsalgv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
bj-ceqsalgvALT (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem bj-ceqsalgvALT
StepHypRef Expression
1 bj-ceqsalgv.1 . 2 𝑥𝜓
2 bj-ceqsalgv.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32ax-gen 1793 . 2 𝑥(𝑥 = 𝐴 → (𝜑𝜓))
4 bj-ceqsaltv 36853 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
51, 3, 4mp3an12 1451 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wnf 1781  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-ex 1778  df-nf 1782  df-clel 2819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator