Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ceqsalgvALT | Structured version Visualization version GIF version |
Description: Alternate proof of bj-ceqsalgv 35055. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-ceqsalgv.1 | ⊢ Ⅎ𝑥𝜓 |
bj-ceqsalgv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
bj-ceqsalgvALT | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ceqsalgv.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | bj-ceqsalgv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | ax-gen 1801 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
4 | bj-ceqsaltv 35051 | . 2 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) | |
5 | 1, 3, 4 | mp3an12 1449 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 = wceq 1541 Ⅎwnf 1789 ∈ wcel 2109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-ex 1786 df-nf 1790 df-clel 2817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |