Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ceqsalgvALT Structured version   Visualization version   GIF version

Theorem bj-ceqsalgvALT 35056
Description: Alternate proof of bj-ceqsalgv 35055. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bj-ceqsalgv.1 𝑥𝜓
bj-ceqsalgv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
bj-ceqsalgvALT (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem bj-ceqsalgvALT
StepHypRef Expression
1 bj-ceqsalgv.1 . 2 𝑥𝜓
2 bj-ceqsalgv.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32ax-gen 1801 . 2 𝑥(𝑥 = 𝐴 → (𝜑𝜓))
4 bj-ceqsaltv 35051 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
51, 3, 4mp3an12 1449 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539   = wceq 1541  wnf 1789  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-ex 1786  df-nf 1790  df-clel 2817
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator