Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ceqsalgv Structured version   Visualization version   GIF version

Theorem bj-ceqsalgv 35076
Description: Version of bj-ceqsalg 35074 with a disjoint variable condition on 𝑥, 𝑉, removing dependency on df-sb 2068 and df-clab 2716. Prefer its use over bj-ceqsalg 35074 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-ceqsalgv.1 𝑥𝜓
bj-ceqsalgv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
bj-ceqsalgv (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem bj-ceqsalgv
StepHypRef Expression
1 elissetv 2819 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 bj-ceqsalgv.1 . . 3 𝑥𝜓
3 bj-ceqsalgv.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
42, 3bj-ceqsalg0 35073 . 2 (∃𝑥 𝑥 = 𝐴 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
51, 4syl 17 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wex 1782  wnf 1786  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-ex 1783  df-nf 1787  df-clel 2816
This theorem is referenced by:  bj-ceqsal  35078
  Copyright terms: Public domain W3C validator