Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ceqsaltv Structured version   Visualization version   GIF version

Theorem bj-ceqsaltv 36863
Description: Version of bj-ceqsalt 36862 with a disjoint variable condition on 𝑥, 𝑉, removing dependency on df-sb 2064 and df-clab 2713. Prefer its use over bj-ceqsalt 36862 when sufficient (in particular when 𝑉 is substituted for V). (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ceqsaltv ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem bj-ceqsaltv
StepHypRef Expression
1 elissetv 2814 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
213anim3i 1154 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∃𝑥 𝑥 = 𝐴))
3 bj-ceqsalt0 36860 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∃𝑥 𝑥 = 𝐴) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
42, 3syl 17 1 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wal 1537   = wceq 1539  wex 1778  wnf 1782  wcel 2107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-12 2176
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-ex 1779  df-nf 1783  df-clel 2808
This theorem is referenced by:  bj-ceqsalgvALT  36868
  Copyright terms: Public domain W3C validator