Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ceqsal Structured version   Visualization version   GIF version

Theorem bj-ceqsal 34980
Description: Remove from ceqsal 3457 dependency on ax-ext 2710 (and on df-cleq 2731, df-v 3425, df-clab 2717, df-sb 2073). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-ceqsal.1 𝑥𝜓
bj-ceqsal.2 𝐴 ∈ V
bj-ceqsal.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
bj-ceqsal (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem bj-ceqsal
StepHypRef Expression
1 bj-ceqsal.2 . 2 𝐴 ∈ V
2 bj-ceqsal.1 . . 3 𝑥𝜓
3 bj-ceqsal.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
42, 3bj-ceqsalgv 34978 . 2 (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
51, 4ax-mp 5 1 (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1541   = wceq 1543  wnf 1791  wcel 2112  Vcvv 3423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-12 2177
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091  df-ex 1788  df-nf 1792  df-clel 2818
This theorem is referenced by:  bj-ceqsalv  34981
  Copyright terms: Public domain W3C validator