| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ceqsal | Structured version Visualization version GIF version | ||
| Description: Remove from ceqsal 3494 dependency on ax-ext 2702 (and on df-cleq 2722, df-v 3457, df-clab 2709, df-sb 2066). (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-ceqsal.1 | ⊢ Ⅎ𝑥𝜓 |
| bj-ceqsal.2 | ⊢ 𝐴 ∈ V |
| bj-ceqsal.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| bj-ceqsal | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-ceqsal.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | bj-ceqsal.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | bj-ceqsal.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | bj-ceqsalgv 36876 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Vcvv 3455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-nf 1784 df-clel 2804 |
| This theorem is referenced by: bj-ceqsalv 36879 |
| Copyright terms: Public domain | W3C validator |