Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dvv Structured version   Visualization version   GIF version

Theorem bj-dvv 36804
Description: A special instance of bj-hbaeb2 36801. A lemma for distinct var metavariables. Note that the right-hand side is a closed formula (a sentence). (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-dvv (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥𝑦 𝑥 = 𝑦)

Proof of Theorem bj-dvv
StepHypRef Expression
1 bj-hbaeb2 36801 1 (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥𝑦 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-10 2139  ax-12 2175  ax-13 2375
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator