Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbaeb2 Structured version   Visualization version   GIF version

Theorem bj-hbaeb2 34928
Description: Biconditional version of a form of hbae 2431 with commuted quantifiers, not requiring ax-11 2156. (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-hbaeb2 (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥𝑧 𝑥 = 𝑦)

Proof of Theorem bj-hbaeb2
StepHypRef Expression
1 sp 2178 . . . . 5 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
2 axc9 2382 . . . . 5 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
31, 2syl7 74 . . . 4 (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
4 axc11r 2366 . . . 4 (∀𝑧 𝑧 = 𝑥 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
5 axc11 2430 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦))
65pm2.43i 52 . . . . 5 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)
7 axc11r 2366 . . . . 5 (∀𝑧 𝑧 = 𝑦 → (∀𝑦 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
86, 7syl5 34 . . . 4 (∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))
93, 4, 8pm2.61ii 183 . . 3 (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)
109axc4i 2320 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑥𝑧 𝑥 = 𝑦)
11 sp 2178 . . 3 (∀𝑧 𝑥 = 𝑦𝑥 = 𝑦)
1211alimi 1815 . 2 (∀𝑥𝑧 𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦)
1310, 12impbii 208 1 (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥𝑧 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788
This theorem is referenced by:  bj-hbaeb  34929  bj-dvv  34931
  Copyright terms: Public domain W3C validator