|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-hbaeb2 | Structured version Visualization version GIF version | ||
| Description: Biconditional version of a form of hbae 2435 with commuted quantifiers, not requiring ax-11 2156. (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| bj-hbaeb2 | ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥∀𝑧 𝑥 = 𝑦) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sp 2182 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 2 | axc9 2386 | . . . . 5 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | |
| 3 | 1, 2 | syl7 74 | . . . 4 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | 
| 4 | axc11r 2370 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑥 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) | |
| 5 | axc11 2434 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)) | |
| 6 | 5 | pm2.43i 52 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦) | 
| 7 | axc11r 2370 | . . . . 5 ⊢ (∀𝑧 𝑧 = 𝑦 → (∀𝑦 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) | |
| 8 | 6, 7 | syl5 34 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) | 
| 9 | 3, 4, 8 | pm2.61ii 183 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) | 
| 10 | 9 | axc4i 2321 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑥∀𝑧 𝑥 = 𝑦) | 
| 11 | sp 2182 | . . 3 ⊢ (∀𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 12 | 11 | alimi 1810 | . 2 ⊢ (∀𝑥∀𝑧 𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦) | 
| 13 | 10, 12 | impbii 209 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥∀𝑧 𝑥 = 𝑦) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 ax-13 2376 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 | 
| This theorem is referenced by: bj-hbaeb 36821 bj-dvv 36823 | 
| Copyright terms: Public domain | W3C validator |