Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-hbnaeb Structured version   Visualization version   GIF version

Theorem bj-hbnaeb 34930
Description: Biconditional version of hbnae 2432 (to replace it?). (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-hbnaeb (¬ ∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)

Proof of Theorem bj-hbnaeb
StepHypRef Expression
1 hbnae 2432 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
2 sp 2178 . 2 (∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦)
31, 2impbii 208 1 (¬ ∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator