| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-hbntbi | Structured version Visualization version GIF version | ||
| Description: Strengthening hbnt 2295 by replacing its consequent with a biconditional. See also hbntg 35828 and hbntal 44545. (Contributed by BJ, 20-Oct-2019.) Proved from bj-19.9htbi 36726. (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-hbntbi | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 ↔ ∀𝑥 ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-19.9htbi 36726 | . . . 4 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 ↔ 𝜑)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (𝜑 ↔ ∃𝑥𝜑)) |
| 3 | 2 | notbid 318 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 ↔ ¬ ∃𝑥𝜑)) |
| 4 | alnex 1781 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 5 | 3, 4 | bitr4di 289 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 ↔ ∀𝑥 ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |