Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-hbntbi | Structured version Visualization version GIF version |
Description: Strengthening hbnt 2294 by replacing its consequent with a biconditional. See also hbntg 33687 and hbntal 42062. (Contributed by BJ, 20-Oct-2019.) Proved from bj-19.9htbi 34812. (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-hbntbi | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 ↔ ∀𝑥 ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-19.9htbi 34812 | . . . 4 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 ↔ 𝜑)) | |
2 | 1 | bicomd 222 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (𝜑 ↔ ∃𝑥𝜑)) |
3 | 2 | notbid 317 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 ↔ ¬ ∃𝑥𝜑)) |
4 | alnex 1785 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
5 | 3, 4 | bitr4di 288 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 ↔ ∀𝑥 ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |