Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbntal Structured version   Visualization version   GIF version

Theorem hbntal 39264
Description: A closed form of hbn 2325. hbnt 2323 is another closed form of hbn 2325. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
hbntal (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))

Proof of Theorem hbntal
StepHypRef Expression
1 hba1 2329 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑥(𝜑 → ∀𝑥𝜑))
2 axc7 2310 . . . . 5 (¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
32con1i 146 . . . 4 𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
4 con3 150 . . . . 5 ((𝜑 → ∀𝑥𝜑) → (¬ ∀𝑥𝜑 → ¬ 𝜑))
54al2imi 1903 . . . 4 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
63, 5syl5 34 . . 3 (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
76alimi 1899 . 2 (∀𝑥𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
81, 7syl 17 1 (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-10 2187  ax-12 2216
This theorem depends on definitions:  df-bi 198  df-or 866  df-ex 1860  df-nf 1865
This theorem is referenced by:  hbimpg  39265  hbimpgVD  39631  hbexgVD  39633
  Copyright terms: Public domain W3C validator