|   | Mathbox for Alan Sare | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hbntal | Structured version Visualization version GIF version | ||
| Description: A closed form of hbn 2294. hbnt 2293 is another closed form of hbn 2294. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| hbntal | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥(¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hba1 2292 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | axc7 2316 | . . . . 5 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) | |
| 3 | 2 | con1i 147 | . . . 4 ⊢ (¬ 𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | 
| 4 | con3 153 | . . . . 5 ⊢ ((𝜑 → ∀𝑥𝜑) → (¬ ∀𝑥𝜑 → ¬ 𝜑)) | |
| 5 | 4 | al2imi 1814 | . . . 4 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑)) | 
| 6 | 3, 5 | syl5 34 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | 
| 7 | 6 | alimi 1810 | . 2 ⊢ (∀𝑥∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥(¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | 
| 8 | 1, 7 | syl 17 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥(¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1779 df-nf 1783 | 
| This theorem is referenced by: hbimpg 44579 hbimpgVD 44929 hbexgVD 44931 | 
| Copyright terms: Public domain | W3C validator |