| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hbntal | Structured version Visualization version GIF version | ||
| Description: A closed form of hbn 2296. hbnt 2295 is another closed form of hbn 2296. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hbntal | ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥(¬ 𝜑 → ∀𝑥 ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 2294 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | axc7 2318 | . . . . 5 ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) | |
| 3 | 2 | con1i 147 | . . . 4 ⊢ (¬ 𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
| 4 | con3 153 | . . . . 5 ⊢ ((𝜑 → ∀𝑥𝜑) → (¬ ∀𝑥𝜑 → ¬ 𝜑)) | |
| 5 | 4 | al2imi 1815 | . . . 4 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑)) |
| 6 | 3, 5 | syl5 34 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) |
| 7 | 6 | alimi 1811 | . 2 ⊢ (∀𝑥∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥(¬ 𝜑 → ∀𝑥 ¬ 𝜑)) |
| 8 | 1, 7 | syl 17 | 1 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥(¬ 𝜑 → ∀𝑥 ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: hbimpg 44546 hbimpgVD 44895 hbexgVD 44897 |
| Copyright terms: Public domain | W3C validator |