Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-issettru Structured version   Visualization version   GIF version

Theorem bj-issettru 35747
Description: Weak version of isset 3487 without ax-ext 2703. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-issettru (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem bj-issettru
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bj-denotes 35746 . 2 (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑧 𝑧 = 𝐴)
2 bj-denoteslem 35745 . 2 (∃𝑧 𝑧 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
31, 2bitri 274 1 (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wtru 1542  wex 1781  wcel 2106  {cab 2709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-clel 2810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator