Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elabtru Structured version   Visualization version   GIF version

Theorem bj-elabtru 36869
Description: This is as close as we can get to proving extensionality for "the" "universal" class without ax-ext 2708. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-elabtru (𝐴 ∈ {𝑥 ∣ ⊤} ↔ 𝐴 ∈ {𝑦 ∣ ⊤})

Proof of Theorem bj-elabtru
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 issettru 2819 . 2 (∃𝑧 𝑧 = 𝐴𝐴 ∈ {𝑥 ∣ ⊤})
2 issettru 2819 . 2 (∃𝑧 𝑧 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
31, 2bitr3i 277 1 (𝐴 ∈ {𝑥 ∣ ⊤} ↔ 𝐴 ∈ {𝑦 ∣ ⊤})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wtru 1540  wex 1778  wcel 2108  {cab 2714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-clel 2816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator