![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-denoteslem | Structured version Visualization version GIF version |
Description: Lemma for bj-denotes 36577. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-denoteslem | ⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑦 ∣ ⊤}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vextru 2710 | . . . 4 ⊢ 𝑥 ∈ {𝑦 ∣ ⊤} | |
2 | 1 | biantru 528 | . . 3 ⊢ (𝑥 = 𝐴 ↔ (𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑦 ∣ ⊤})) |
3 | 2 | exbii 1843 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑦 ∣ ⊤})) |
4 | dfclel 2804 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ⊤} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑦 ∣ ⊤})) | |
5 | 3, 4 | bitr4i 277 | 1 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑦 ∣ ⊤}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 ⊤wtru 1535 ∃wex 1774 ∈ wcel 2099 {cab 2703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-clel 2803 |
This theorem is referenced by: bj-denotes 36577 bj-issettru 36578 bj-elabtru 36579 |
Copyright terms: Public domain | W3C validator |