Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-denoteslem Structured version   Visualization version   GIF version

Theorem bj-denoteslem 36576
Description: Lemma for bj-denotes 36577. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-denoteslem (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem bj-denoteslem
StepHypRef Expression
1 vextru 2710 . . . 4 𝑥 ∈ {𝑦 ∣ ⊤}
21biantru 528 . . 3 (𝑥 = 𝐴 ↔ (𝑥 = 𝐴𝑥 ∈ {𝑦 ∣ ⊤}))
32exbii 1843 . 2 (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 = 𝐴𝑥 ∈ {𝑦 ∣ ⊤}))
4 dfclel 2804 . 2 (𝐴 ∈ {𝑦 ∣ ⊤} ↔ ∃𝑥(𝑥 = 𝐴𝑥 ∈ {𝑦 ∣ ⊤}))
53, 4bitr4i 277 1 (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1534  wtru 1535  wex 1774  wcel 2099  {cab 2703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-clel 2803
This theorem is referenced by:  bj-denotes  36577  bj-issettru  36578  bj-elabtru  36579
  Copyright terms: Public domain W3C validator