Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-issettruALTV Structured version   Visualization version   GIF version

Theorem bj-issettruALTV 36856
Description: Moved to main as issettru 2807 and kept for the comments.

Weak version of isset 3464 without ax-ext 2702. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.)

Assertion
Ref Expression
bj-issettruALTV (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem bj-issettruALTV
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 iseqsetv-clel 2808 . 2 (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑧 𝑧 = 𝐴)
2 issettru 2807 . 2 (∃𝑧 𝑧 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
31, 2bitri 275 1 (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wtru 1541  wex 1779  wcel 2109  {cab 2708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-clel 2804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator