![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-issettruALTV | Structured version Visualization version GIF version |
Description: Moved to main as issettru 2822 and kept for the comments.
Weak version of isset 3502 without ax-ext 2711. (Contributed by BJ, 24-Apr-2024.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-issettruALTV | ⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑦 ∣ ⊤}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqsetv-clel 2823 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑧 𝑧 = 𝐴) | |
2 | issettru 2822 | . 2 ⊢ (∃𝑧 𝑧 = 𝐴 ↔ 𝐴 ∈ {𝑦 ∣ ⊤}) | |
3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑦 ∣ ⊤}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⊤wtru 1538 ∃wex 1777 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-clel 2819 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |