MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issettru Structured version   Visualization version   GIF version

Theorem issettru 2822
Description: Weak version of isset 3502. (Contributed by BJ, 24-Apr-2024.)
Assertion
Ref Expression
issettru (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem issettru
StepHypRef Expression
1 vextru 2724 . . . 4 𝑥 ∈ {𝑦 ∣ ⊤}
21biantru 529 . . 3 (𝑥 = 𝐴 ↔ (𝑥 = 𝐴𝑥 ∈ {𝑦 ∣ ⊤}))
32exbii 1846 . 2 (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 = 𝐴𝑥 ∈ {𝑦 ∣ ⊤}))
4 dfclel 2820 . 2 (𝐴 ∈ {𝑦 ∣ ⊤} ↔ ∃𝑥(𝑥 = 𝐴𝑥 ∈ {𝑦 ∣ ⊤}))
53, 4bitr4i 278 1 (∃𝑥 𝑥 = 𝐴𝐴 ∈ {𝑦 ∣ ⊤})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wtru 1538  wex 1777  wcel 2108  {cab 2717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-clel 2819
This theorem is referenced by:  iseqsetv-clel  2823  bj-issettruALTV  36832  bj-elabtru  36833
  Copyright terms: Public domain W3C validator