| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issettru | Structured version Visualization version GIF version | ||
| Description: Weak version of isset 3471. (Contributed by BJ, 24-Apr-2024.) |
| Ref | Expression |
|---|---|
| issettru | ⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑦 ∣ ⊤}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vextru 2719 | . . . 4 ⊢ 𝑥 ∈ {𝑦 ∣ ⊤} | |
| 2 | 1 | biantru 529 | . . 3 ⊢ (𝑥 = 𝐴 ↔ (𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑦 ∣ ⊤})) |
| 3 | 2 | exbii 1847 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑦 ∣ ⊤})) |
| 4 | dfclel 2809 | . 2 ⊢ (𝐴 ∈ {𝑦 ∣ ⊤} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ {𝑦 ∣ ⊤})) | |
| 5 | 3, 4 | bitr4i 278 | 1 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ 𝐴 ∈ {𝑦 ∣ ⊤}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∃wex 1778 ∈ wcel 2107 {cab 2712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-clel 2808 |
| This theorem is referenced by: iseqsetv-clel 2812 bj-issettruALTV 36820 bj-elabtru 36821 |
| Copyright terms: Public domain | W3C validator |