| Step | Hyp | Ref
| Expression |
| 1 | | pm3.22 459 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ V)) |
| 2 | 1 | adantrr 717 |
. . . . . 6
⊢ ((𝐵 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ V)) |
| 3 | | uniprg 4923 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ V) → ∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵)) |
| 4 | 2, 3 | syl 17 |
. . . . 5
⊢ ((𝐵 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵)) → ∪
{𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
| 5 | | simprr 773 |
. . . . . 6
⊢ ((𝐵 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵)) → 𝐴 ⊆ 𝐵) |
| 6 | | ssequn1 4186 |
. . . . . 6
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
| 7 | 5, 6 | sylib 218 |
. . . . 5
⊢ ((𝐵 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵)) → (𝐴 ∪ 𝐵) = 𝐵) |
| 8 | 4, 7 | eqtrd 2777 |
. . . 4
⊢ ((𝐵 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵)) → ∪
{𝐴, 𝐵} = 𝐵) |
| 9 | | prid2g 4761 |
. . . . 5
⊢ (𝐵 ∈ V → 𝐵 ∈ {𝐴, 𝐵}) |
| 10 | 9 | adantr 480 |
. . . 4
⊢ ((𝐵 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵)) → 𝐵 ∈ {𝐴, 𝐵}) |
| 11 | 8, 10 | eqeltrd 2841 |
. . 3
⊢ ((𝐵 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵)) → ∪
{𝐴, 𝐵} ∈ {𝐴, 𝐵}) |
| 12 | | biid 261 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ↔ (𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵)) |
| 13 | 12 | bianass 642 |
. . . 4
⊢ ((𝐵 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵)) ↔ ((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝐴 ⊆ 𝐵)) |
| 14 | | inteq 4949 |
. . . . . . . . . 10
⊢ (𝑥 = {𝐴} → ∩ 𝑥 = ∩
{𝐴}) |
| 15 | | intsng 4983 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → ∩ {𝐴} = 𝐴) |
| 16 | 15 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) → ∩ {𝐴} = 𝐴) |
| 17 | 14, 16 | sylan9eqr 2799 |
. . . . . . . . 9
⊢ (((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 = {𝐴}) → ∩ 𝑥 = 𝐴) |
| 18 | | prid1g 4760 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| 19 | 18 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ {𝐴, 𝐵}) |
| 20 | 19 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 = {𝐴}) → 𝐴 ∈ {𝐴, 𝐵}) |
| 21 | 17, 20 | eqeltrd 2841 |
. . . . . . . 8
⊢ (((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 = {𝐴}) → ∩ 𝑥 ∈ {𝐴, 𝐵}) |
| 22 | 21 | ex 412 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥 = {𝐴} → ∩ 𝑥 ∈ {𝐴, 𝐵})) |
| 23 | 22 | adantr 480 |
. . . . . 6
⊢ (((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝐴 ⊆ 𝐵) → (𝑥 = {𝐴} → ∩ 𝑥 ∈ {𝐴, 𝐵})) |
| 24 | | inteq 4949 |
. . . . . . . . . . 11
⊢ (𝑥 = {𝐵} → ∩ 𝑥 = ∩
{𝐵}) |
| 25 | | intsng 4983 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ V → ∩ {𝐵}
= 𝐵) |
| 26 | 25 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) → ∩ {𝐵} = 𝐵) |
| 27 | 24, 26 | sylan9eqr 2799 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 = {𝐵}) → ∩ 𝑥 = 𝐵) |
| 28 | 9 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 = {𝐵}) → 𝐵 ∈ {𝐴, 𝐵}) |
| 29 | 27, 28 | eqeltrd 2841 |
. . . . . . . . 9
⊢ (((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 = {𝐵}) → ∩ 𝑥 ∈ {𝐴, 𝐵}) |
| 30 | 29 | ex 412 |
. . . . . . . 8
⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥 = {𝐵} → ∩ 𝑥 ∈ {𝐴, 𝐵})) |
| 31 | 30 | adantr 480 |
. . . . . . 7
⊢ (((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝐴 ⊆ 𝐵) → (𝑥 = {𝐵} → ∩ 𝑥 ∈ {𝐴, 𝐵})) |
| 32 | | inteq 4949 |
. . . . . . . . . . 11
⊢ (𝑥 = {𝐴, 𝐵} → ∩ 𝑥 = ∩
{𝐴, 𝐵}) |
| 33 | 32 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 = {𝐴, 𝐵}) → ∩ 𝑥 = ∩
{𝐴, 𝐵}) |
| 34 | 1 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 = {𝐴, 𝐵}) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ V)) |
| 35 | | intprg 4981 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ V) → ∩ {𝐴,
𝐵} = (𝐴 ∩ 𝐵)) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 = {𝐴, 𝐵}) → ∩
{𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
| 37 | | dfss2 3969 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
| 38 | 37 | biimpi 216 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
| 39 | 38 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∩ 𝐵) = 𝐴) |
| 40 | 39 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 = {𝐴, 𝐵}) → (𝐴 ∩ 𝐵) = 𝐴) |
| 41 | 33, 36, 40 | 3eqtrd 2781 |
. . . . . . . . 9
⊢ ((((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 = {𝐴, 𝐵}) → ∩ 𝑥 = 𝐴) |
| 42 | 18 | ad3antlr 731 |
. . . . . . . . 9
⊢ ((((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 = {𝐴, 𝐵}) → 𝐴 ∈ {𝐴, 𝐵}) |
| 43 | 41, 42 | eqeltrd 2841 |
. . . . . . . 8
⊢ ((((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 = {𝐴, 𝐵}) → ∩ 𝑥 ∈ {𝐴, 𝐵}) |
| 44 | 43 | ex 412 |
. . . . . . 7
⊢ (((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝐴 ⊆ 𝐵) → (𝑥 = {𝐴, 𝐵} → ∩ 𝑥 ∈ {𝐴, 𝐵})) |
| 45 | 31, 44 | jaod 860 |
. . . . . 6
⊢ (((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝐴 ⊆ 𝐵) → ((𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}) → ∩ 𝑥 ∈ {𝐴, 𝐵})) |
| 46 | 23, 45 | jaod 860 |
. . . . 5
⊢ (((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝐴 ⊆ 𝐵) → ((𝑥 = {𝐴} ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) → ∩
𝑥 ∈ {𝐴, 𝐵})) |
| 47 | | sspr 4835 |
. . . . . 6
⊢ (𝑥 ⊆ {𝐴, 𝐵} ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))) |
| 48 | | andir 1011 |
. . . . . . 7
⊢ ((((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) ∧ 𝑥 ≠ ∅) ↔ (((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∧ 𝑥 ≠ ∅) ∨ ((𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}) ∧ 𝑥 ≠ ∅))) |
| 49 | | andir 1011 |
. . . . . . . . 9
⊢ (((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∧ 𝑥 ≠ ∅) ↔ ((𝑥 = ∅ ∧ 𝑥 ≠ ∅) ∨ (𝑥 = {𝐴} ∧ 𝑥 ≠ ∅))) |
| 50 | | eqneqall 2951 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → (𝑥 ≠ ∅ →
⊥)) |
| 51 | 50 | imp 406 |
. . . . . . . . . . 11
⊢ ((𝑥 = ∅ ∧ 𝑥 ≠ ∅) →
⊥) |
| 52 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 = {𝐴} ∧ 𝑥 ≠ ∅) → 𝑥 = {𝐴}) |
| 53 | 51, 52 | orim12i 909 |
. . . . . . . . . 10
⊢ (((𝑥 = ∅ ∧ 𝑥 ≠ ∅) ∨ (𝑥 = {𝐴} ∧ 𝑥 ≠ ∅)) → (⊥ ∨ 𝑥 = {𝐴})) |
| 54 | | falim 1557 |
. . . . . . . . . . 11
⊢ (⊥
→ 𝑥 = {𝐴}) |
| 55 | 54 | bj-jaoi1 36572 |
. . . . . . . . . 10
⊢ ((⊥
∨ 𝑥 = {𝐴}) → 𝑥 = {𝐴}) |
| 56 | 53, 55 | syl 17 |
. . . . . . . . 9
⊢ (((𝑥 = ∅ ∧ 𝑥 ≠ ∅) ∨ (𝑥 = {𝐴} ∧ 𝑥 ≠ ∅)) → 𝑥 = {𝐴}) |
| 57 | 49, 56 | sylbi 217 |
. . . . . . . 8
⊢ (((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∧ 𝑥 ≠ ∅) → 𝑥 = {𝐴}) |
| 58 | | simpl 482 |
. . . . . . . 8
⊢ (((𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}) ∧ 𝑥 ≠ ∅) → (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) |
| 59 | 57, 58 | orim12i 909 |
. . . . . . 7
⊢ ((((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∧ 𝑥 ≠ ∅) ∨ ((𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}) ∧ 𝑥 ≠ ∅)) → (𝑥 = {𝐴} ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))) |
| 60 | 48, 59 | sylbi 217 |
. . . . . 6
⊢ ((((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) ∧ 𝑥 ≠ ∅) → (𝑥 = {𝐴} ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))) |
| 61 | 47, 60 | sylanb 581 |
. . . . 5
⊢ ((𝑥 ⊆ {𝐴, 𝐵} ∧ 𝑥 ≠ ∅) → (𝑥 = {𝐴} ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))) |
| 62 | 46, 61 | impel 505 |
. . . 4
⊢ ((((𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) ∧ 𝐴 ⊆ 𝐵) ∧ (𝑥 ⊆ {𝐴, 𝐵} ∧ 𝑥 ≠ ∅)) → ∩ 𝑥
∈ {𝐴, 𝐵}) |
| 63 | 13, 62 | sylanb 581 |
. . 3
⊢ (((𝐵 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵)) ∧ (𝑥 ⊆ {𝐴, 𝐵} ∧ 𝑥 ≠ ∅)) → ∩ 𝑥
∈ {𝐴, 𝐵}) |
| 64 | 11, 63 | bj-ismooredr2 37111 |
. 2
⊢ ((𝐵 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵)) → {𝐴, 𝐵} ∈ Moore) |
| 65 | | pm3.22 459 |
. . . . 5
⊢ ((¬
𝐵 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ 𝑉 ∧ ¬ 𝐵 ∈ V)) |
| 66 | 65 | adantrr 717 |
. . . 4
⊢ ((¬
𝐵 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵)) → (𝐴 ∈ 𝑉 ∧ ¬ 𝐵 ∈ V)) |
| 67 | | prprc2 4766 |
. . . . . 6
⊢ (¬
𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
| 68 | 67 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = {𝐴}) |
| 69 | 68 | eqcomd 2743 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐵 ∈ V) → {𝐴} = {𝐴, 𝐵}) |
| 70 | 66, 69 | syl 17 |
. . 3
⊢ ((¬
𝐵 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵)) → {𝐴} = {𝐴, 𝐵}) |
| 71 | | bj-snmoore 37114 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ Moore) |
| 72 | 71 | ad2antrl 728 |
. . 3
⊢ ((¬
𝐵 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵)) → {𝐴} ∈ Moore) |
| 73 | 70, 72 | eqeltrrd 2842 |
. 2
⊢ ((¬
𝐵 ∈ V ∧ (𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵)) → {𝐴, 𝐵} ∈ Moore) |
| 74 | 64, 73 | pm2.61ian 812 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → {𝐴, 𝐵} ∈ Moore) |