![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-modal4 | Structured version Visualization version GIF version |
Description: First-order logic form of the modal axiom (4). See hba1 2290. This is the standard proof of the implication in modal logic (B5 ⇒ 4). Its dual statement is bj-modal4e 35498. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-modal4 | ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-modalbe 35471 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥∃𝑥∀𝑥𝜑) | |
2 | hbe1a 2141 | . 2 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | sylg 1826 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2138 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: bj-modal4e 35498 bj-substax12 35504 bj-nnfa1 35542 |
Copyright terms: Public domain | W3C validator |