Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-modal4 Structured version   Visualization version   GIF version

Theorem bj-modal4 34992
Description: First-order logic form of the modal axiom (4). See hba1 2289. This is the standard proof of the implication in modal logic (B5 4). Its dual statement is bj-modal4e 34993. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-modal4 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem bj-modal4
StepHypRef Expression
1 bj-modalbe 34966 . 2 (∀𝑥𝜑 → ∀𝑥𝑥𝑥𝜑)
2 hbe1a 2139 . 2 (∃𝑥𝑥𝜑 → ∀𝑥𝜑)
31, 2sylg 1824 1 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-ex 1781
This theorem is referenced by:  bj-modal4e  34993  bj-substax12  34999  bj-nnfa1  35037
  Copyright terms: Public domain W3C validator