| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sb | Structured version Visualization version GIF version | ||
| Description: A weak variant of sbid2 2511 not requiring ax-13 2375 nor ax-10 2140. On top of Tarski's FOL, one implication requires only ax12v 2177, and the other requires only sp 2182. (Contributed by BJ, 25-May-2021.) |
| Ref | Expression |
|---|---|
| bj-sb | ⊢ (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax12v 2177 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | 1 | equcoms 2018 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 3 | 2 | com12 32 | . . 3 ⊢ (𝜑 → (𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 4 | 3 | alrimiv 1926 | . 2 ⊢ (𝜑 → ∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 5 | sp 2182 | . . . . . . 7 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
| 6 | 5 | com12 32 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜑)) |
| 7 | 6 | equcoms 2018 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∀𝑥(𝑥 = 𝑦 → 𝜑) → 𝜑)) |
| 8 | 7 | a2i 14 | . . . 4 ⊢ ((𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → (𝑦 = 𝑥 → 𝜑)) |
| 9 | 8 | alimi 1810 | . . 3 ⊢ (∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∀𝑦(𝑦 = 𝑥 → 𝜑)) |
| 10 | bj-eqs 36635 | . . 3 ⊢ (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → 𝜑)) | |
| 11 | 9, 10 | sylibr 234 | . 2 ⊢ (∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → 𝜑) |
| 12 | 4, 11 | impbii 209 | 1 ⊢ (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |