Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sb Structured version   Visualization version   GIF version

Theorem bj-sb 34796
Description: A weak variant of sbid2 2512 not requiring ax-13 2372 nor ax-10 2139. On top of Tarski's FOL, one implication requires only ax12v 2174, and the other requires only sp 2178. (Contributed by BJ, 25-May-2021.)
Assertion
Ref Expression
bj-sb (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bj-sb
StepHypRef Expression
1 ax12v 2174 . . . . 5 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
21equcoms 2024 . . . 4 (𝑦 = 𝑥 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
32com12 32 . . 3 (𝜑 → (𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦𝜑)))
43alrimiv 1931 . 2 (𝜑 → ∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦𝜑)))
5 sp 2178 . . . . . . 7 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
65com12 32 . . . . . 6 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
76equcoms 2024 . . . . 5 (𝑦 = 𝑥 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
87a2i 14 . . . 4 ((𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦𝜑)) → (𝑦 = 𝑥𝜑))
98alimi 1815 . . 3 (∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦𝜑)) → ∀𝑦(𝑦 = 𝑥𝜑))
10 bj-eqs 34783 . . 3 (𝜑 ↔ ∀𝑦(𝑦 = 𝑥𝜑))
119, 10sylibr 233 . 2 (∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦𝜑)) → 𝜑)
124, 11impbii 208 1 (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator