Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pm11.53a | Structured version Visualization version GIF version |
Description: A variant of pm11.53v 1948. One can similarly prove a variant with DV (𝑦, 𝜑) and ∀𝑦Ⅎ'𝑥𝜓 instead of DV (𝑥, 𝜓) and ∀𝑥Ⅎ'𝑦𝜑. (Contributed by BJ, 7-Oct-2024.) |
Ref | Expression |
---|---|
bj-pm11.53a | ⊢ (∀𝑥Ⅎ'𝑦𝜑 → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nnfv 34863 | . 2 ⊢ Ⅎ'𝑥∀𝑦𝜓 | |
2 | bj-pm11.53vw 34885 | . 2 ⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ Ⅎ'𝑥∀𝑦𝜓) → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) | |
3 | 1, 2 | mpan2 687 | 1 ⊢ (∀𝑥Ⅎ'𝑦𝜑 → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 Ⅎ'wnnf 34832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-bj-nnf 34833 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |