Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pm11.53a Structured version   Visualization version   GIF version

Theorem bj-pm11.53a 36736
Description: A variant of pm11.53v 1943. One can similarly prove a variant with DV (𝑦, 𝜑) and 𝑦Ⅎ'𝑥𝜓 instead of DV (𝑥, 𝜓) and 𝑥Ⅎ'𝑦𝜑. (Contributed by BJ, 7-Oct-2024.)
Assertion
Ref Expression
bj-pm11.53a (∀𝑥Ⅎ'𝑦𝜑 → (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)))
Distinct variable groups:   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem bj-pm11.53a
StepHypRef Expression
1 bj-nnfv 36712 . 2 Ⅎ'𝑥𝑦𝜓
2 bj-pm11.53vw 36734 . 2 ((∀𝑥Ⅎ'𝑦𝜑 ∧ Ⅎ'𝑥𝑦𝜓) → (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)))
31, 2mpan2 690 1 (∀𝑥Ⅎ'𝑦𝜑 → (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wex 1777  Ⅎ'wnnf 36681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-bj-nnf 36682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator