Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsvt | Structured version Visualization version GIF version |
Description: A variant of equsv 2009. (Contributed by BJ, 7-Oct-2024.) |
Ref | Expression |
---|---|
bj-equsvt | ⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-19.23t 34931 | . 2 ⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ (∃𝑥 𝑥 = 𝑦 → 𝜑))) | |
2 | ax6ev 1976 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
3 | 2 | a1bi 362 | . 2 ⊢ (𝜑 ↔ (∃𝑥 𝑥 = 𝑦 → 𝜑)) |
4 | 1, 3 | bitr4di 288 | 1 ⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 ∃wex 1785 Ⅎ'wnnf 34884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-6 1974 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-bj-nnf 34885 |
This theorem is referenced by: bj-equsalvwd 34941 |
Copyright terms: Public domain | W3C validator |