| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-equsvt | Structured version Visualization version GIF version | ||
| Description: A variant of equsv 2002. (Contributed by BJ, 7-Oct-2024.) |
| Ref | Expression |
|---|---|
| bj-equsvt | ⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-19.23t 36771 | . 2 ⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ (∃𝑥 𝑥 = 𝑦 → 𝜑))) | |
| 2 | ax6ev 1969 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 3 | 2 | a1bi 362 | . 2 ⊢ (𝜑 ↔ (∃𝑥 𝑥 = 𝑦 → 𝜑)) |
| 4 | 1, 3 | bitr4di 289 | 1 ⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎ'wnnf 36724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-bj-nnf 36725 |
| This theorem is referenced by: bj-equsalvwd 36781 |
| Copyright terms: Public domain | W3C validator |