Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-equsvt Structured version   Visualization version   GIF version

Theorem bj-equsvt 34940
Description: A variant of equsv 2009. (Contributed by BJ, 7-Oct-2024.)
Assertion
Ref Expression
bj-equsvt (Ⅎ'𝑥𝜑 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-equsvt
StepHypRef Expression
1 bj-19.23t 34931 . 2 (Ⅎ'𝑥𝜑 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ (∃𝑥 𝑥 = 𝑦𝜑)))
2 ax6ev 1976 . . 3 𝑥 𝑥 = 𝑦
32a1bi 362 . 2 (𝜑 ↔ (∃𝑥 𝑥 = 𝑦𝜑))
41, 3bitr4di 288 1 (Ⅎ'𝑥𝜑 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539  wex 1785  Ⅎ'wnnf 34884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-6 1974
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-bj-nnf 34885
This theorem is referenced by:  bj-equsalvwd  34941
  Copyright terms: Public domain W3C validator