Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pm11.53vw | Structured version Visualization version GIF version |
Description: Version of pm11.53v 1948 with nonfreeness antecedents. One can also prove the theorem with antecedent (Ⅎ'𝑦∀𝑥𝜑 ∧ ∀𝑦Ⅎ'𝑥𝜓). (Contributed by BJ, 7-Oct-2024.) |
Ref | Expression |
---|---|
bj-pm11.53vw | ⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ Ⅎ'𝑥∀𝑦𝜓) → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ Ⅎ'𝑥∀𝑦𝜓) → ∀𝑥Ⅎ'𝑦𝜑) | |
2 | bj-19.21t 34878 | . . . 4 ⊢ (Ⅎ'𝑦𝜑 → (∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑦𝜓))) | |
3 | 1, 2 | sylg 1826 | . . 3 ⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ Ⅎ'𝑥∀𝑦𝜓) → ∀𝑥(∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑦𝜓))) |
4 | albi 1822 | . . 3 ⊢ (∀𝑥(∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑦𝜓)) → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑥(𝜑 → ∀𝑦𝜓))) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ Ⅎ'𝑥∀𝑦𝜓) → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑥(𝜑 → ∀𝑦𝜓))) |
6 | bj-19.23t 34879 | . . 3 ⊢ (Ⅎ'𝑥∀𝑦𝜓 → (∀𝑥(𝜑 → ∀𝑦𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) | |
7 | 6 | adantl 481 | . 2 ⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ Ⅎ'𝑥∀𝑦𝜓) → (∀𝑥(𝜑 → ∀𝑦𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) |
8 | 5, 7 | bitrd 278 | 1 ⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ Ⅎ'𝑥∀𝑦𝜓) → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∃wex 1783 Ⅎ'wnnf 34832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-bj-nnf 34833 |
This theorem is referenced by: bj-pm11.53v 34886 bj-pm11.53a 34887 |
Copyright terms: Public domain | W3C validator |