Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pm11.53v Structured version   Visualization version   GIF version

Theorem bj-pm11.53v 34938
Description: Version of pm11.53v 1950 with nonfreeness antecedents. (Contributed by BJ, 7-Oct-2024.)
Assertion
Ref Expression
bj-pm11.53v ((∀𝑥Ⅎ'𝑦𝜑 ∧ ∀𝑦Ⅎ'𝑥𝜓) → (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)))

Proof of Theorem bj-pm11.53v
StepHypRef Expression
1 bj-nnfalt 34927 . 2 (∀𝑦Ⅎ'𝑥𝜓 → Ⅎ'𝑥𝑦𝜓)
2 bj-pm11.53vw 34937 . 2 ((∀𝑥Ⅎ'𝑦𝜑 ∧ Ⅎ'𝑥𝑦𝜓) → (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)))
31, 2sylan2 592 1 ((∀𝑥Ⅎ'𝑦𝜑 ∧ ∀𝑦Ⅎ'𝑥𝜓) → (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1539  wex 1785  Ⅎ'wnnf 34884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-10 2140  ax-11 2157  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-bj-nnf 34885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator