| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pm11.53v | Structured version Visualization version GIF version | ||
| Description: Version of pm11.53v 1943 with nonfreeness antecedents. (Contributed by BJ, 7-Oct-2024.) |
| Ref | Expression |
|---|---|
| bj-pm11.53v | ⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ ∀𝑦Ⅎ'𝑥𝜓) → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nnfalt 36705 | . 2 ⊢ (∀𝑦Ⅎ'𝑥𝜓 → Ⅎ'𝑥∀𝑦𝜓) | |
| 2 | bj-pm11.53vw 36715 | . 2 ⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ Ⅎ'𝑥∀𝑦𝜓) → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) | |
| 3 | 1, 2 | sylan2 593 | 1 ⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ ∀𝑦Ⅎ'𝑥𝜓) → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 Ⅎ'wnnf 36662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-bj-nnf 36663 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |