Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pm11.53v Structured version   Visualization version   GIF version

Theorem bj-pm11.53v 36790
Description: Version of pm11.53v 1945 with nonfreeness antecedents. (Contributed by BJ, 7-Oct-2024.)
Assertion
Ref Expression
bj-pm11.53v ((∀𝑥Ⅎ'𝑦𝜑 ∧ ∀𝑦Ⅎ'𝑥𝜓) → (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)))

Proof of Theorem bj-pm11.53v
StepHypRef Expression
1 bj-nnfalt 36779 . 2 (∀𝑦Ⅎ'𝑥𝜓 → Ⅎ'𝑥𝑦𝜓)
2 bj-pm11.53vw 36789 . 2 ((∀𝑥Ⅎ'𝑦𝜑 ∧ Ⅎ'𝑥𝑦𝜓) → (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)))
31, 2sylan2 593 1 ((∀𝑥Ⅎ'𝑦𝜑 ∧ ∀𝑦Ⅎ'𝑥𝜓) → (∀𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wex 1780  Ⅎ'wnnf 36736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2143  ax-11 2159  ax-12 2179
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-bj-nnf 36737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator