| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcoms | Structured version Visualization version GIF version | ||
| Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
| Ref | Expression |
|---|---|
| equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 2017 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equtr 2021 equeuclr 2023 spfw 2033 cbvalw 2035 alcomimw 2043 ax8 2115 elequ1 2116 ax9 2123 elequ2 2124 stdpc7 2251 sbequ12r 2253 cbvalv1 2339 cbval 2396 sb9 2517 ax9ALT 2724 sbralieALT 3327 rabrabi 3425 reurab 3672 reu8 3704 sbcco2 3780 reu8nf 3840 notabw 4276 sbcop1 5448 opeliunxp 5705 opeliun2xp 5706 elrnmpt1 5924 elidinxp 6015 fvn0ssdmfun 7046 elabrex 7216 elabrexg 7217 riotarab 7386 tfisi 7835 tfinds2 7840 opabex3d 7944 opabex3rd 7945 opabex3 7946 xpord2indlem 8126 xpord3inddlem 8133 mpocurryd 8248 boxriin 8913 ixpiunwdom 9543 elirrv 9549 rabssnn0fi 13951 fproddivf 15953 prmodvdslcmf 17018 eqg0subg 19128 1mavmul 22435 ptbasfi 23468 elmptrab 23714 pcoass 24924 iundisj2 25450 dchrisumlema 27399 dchrisumlem2 27401 cusgrfilem2 29384 frgrncvvdeq 30238 frgr2wwlk1 30258 iundisj2f 32519 iundisj2fi 32720 bnj1014 34951 cvmsss2 35261 gonarlem 35381 ax8dfeq 35786 in-ax8 36212 ss-ax8 36213 bj-ssbid1ALT 36653 bj-cbvexw 36664 bj-sb 36675 finxpreclem6 37384 ralssiun 37395 wl-nfs1t 37525 wl-equsb4 37545 wl-euequf 37562 wl-ax11-lem8 37580 matunitlindflem1 37610 poimirlem26 37640 mblfinlem2 37652 sdclem2 37736 axc11-o 38944 evl1gprodd 42105 idomnnzgmulnz 42121 abbibw 42665 rexzrexnn0 42792 disjinfi 45186 dvnmptdivc 45936 iblsplitf 45968 vonn0ioo2 46688 vonn0icc2 46690 funressnvmo 47046 ichcircshi 47455 ichreuopeq 47474 paireqne 47512 reuopreuprim 47527 uspgrsprf1 48135 |
| Copyright terms: Public domain | W3C validator |