Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equcoms | Structured version Visualization version GIF version |
Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 2021 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: equtr 2025 equeuclr 2027 spfw 2037 cbvalw 2039 alcomiw 2047 alcomiwOLD 2048 ax8 2113 elequ1 2114 ax9 2121 elequ2 2122 stdpc7 2244 sbequ12r 2246 cbvalv1 2339 cbval 2399 sb9 2524 ax9ALT 2734 sbralie 3407 rabrabi 3428 reu8 3669 sbcco2 3744 reu8nf 3811 notabw 4238 ab0OLD 4310 sbcop1 5403 opeliunxp 5655 elrnmpt1 5870 elidinxp 5954 fvn0ssdmfun 6961 elabrex 7125 tfisi 7714 tfinds2 7719 opabex3d 7817 opabex3rd 7818 opabex3 7819 mpocurryd 8094 boxriin 8737 ixpiunwdom 9358 elirrv 9364 rabssnn0fi 13715 fproddivf 15706 prmodvdslcmf 16757 1mavmul 21706 ptbasfi 22741 elmptrab 22987 pcoass 24196 iundisj2 24722 dchrisumlema 26645 dchrisumlem2 26647 cusgrfilem2 27832 frgrncvvdeq 28682 frgr2wwlk1 28702 iundisj2f 30938 iundisj2fi 31127 bnj1014 32950 cvmsss2 33245 gonarlem 33365 riotarab 33682 reurab 33683 ax8dfeq 33783 xpord2ind 33803 xpord3ind 33809 bj-ssbid1ALT 34855 bj-cbvexw 34866 bj-sb 34878 finxpreclem6 35576 ralssiun 35587 wl-nfs1t 35705 wl-equsb4 35721 wl-euequf 35738 wl-ax11-lem8 35752 matunitlindflem1 35782 poimirlem26 35812 mblfinlem2 35824 sdclem2 35909 axc11-o 36972 rexzrexnn0 40633 elabrexg 42596 disjinfi 42738 dvnmptdivc 43486 iblsplitf 43518 vonn0ioo2 44235 vonn0icc2 44237 funressnvmo 44550 ichcircshi 44917 ichreuopeq 44936 paireqne 44974 reuopreuprim 44989 uspgrsprf1 45320 opeliun2xp 45679 |
Copyright terms: Public domain | W3C validator |