| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcoms | Structured version Visualization version GIF version | ||
| Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
| Ref | Expression |
|---|---|
| equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 2018 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: equtr 2022 equeuclr 2024 spfw 2034 cbvalw 2036 alcomimw 2044 ax8 2117 elequ1 2118 ax9 2125 elequ2 2126 stdpc7 2253 sbequ12r 2255 cbvalv1 2341 cbval 2398 sb9 2519 ax9ALT 2726 sbralieALT 3319 rabrabi 3414 reurab 3660 reu8 3692 sbcco2 3768 reu8nf 3828 notabw 4263 sbcop1 5428 opeliunxp 5683 opeliun2xp 5684 elrnmpt1 5900 elidinxp 5993 fvn0ssdmfun 7007 elabrex 7176 elabrexg 7177 riotarab 7345 tfisi 7789 tfinds2 7794 opabex3d 7897 opabex3rd 7898 opabex3 7899 xpord2indlem 8077 xpord3inddlem 8084 mpocurryd 8199 boxriin 8864 ixpiunwdom 9476 elirrv 9483 elirrvOLD 9484 rabssnn0fi 13890 fproddivf 15891 prmodvdslcmf 16956 eqg0subg 19106 1mavmul 22461 ptbasfi 23494 elmptrab 23740 pcoass 24949 iundisj2 25475 dchrisumlema 27424 dchrisumlem2 27426 cusgrfilem2 29433 frgrncvvdeq 30284 frgr2wwlk1 30304 iundisj2f 32565 iundisj2fi 32774 bnj1014 34968 cvmsss2 35306 gonarlem 35426 ax8dfeq 35831 in-ax8 36257 ss-ax8 36258 bj-ssbid1ALT 36698 bj-cbvexw 36709 bj-sb 36720 finxpreclem6 37429 ralssiun 37440 wl-nfs1t 37570 wl-equsb4 37590 wl-euequf 37607 wl-ax11-lem8 37625 matunitlindflem1 37655 poimirlem26 37685 mblfinlem2 37697 sdclem2 37781 axc11-o 38989 evl1gprodd 42149 idomnnzgmulnz 42165 abbibw 42709 rexzrexnn0 42836 disjinfi 45228 dvnmptdivc 45975 iblsplitf 46007 vonn0ioo2 46727 vonn0icc2 46729 funressnvmo 47075 ichcircshi 47484 ichreuopeq 47503 paireqne 47541 reuopreuprim 47556 uspgrsprf1 48177 |
| Copyright terms: Public domain | W3C validator |