Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equcoms | Structured version Visualization version GIF version |
Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 2021 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: equtr 2025 equeuclr 2027 spfw 2037 cbvalw 2039 alcomiw 2047 alcomiwOLD 2048 ax8 2114 elequ1 2115 ax9 2122 elequ2 2123 stdpc7 2246 sbequ12r 2248 cbvalv1 2340 cbval 2398 sb9 2523 ax9ALT 2733 sbralie 3395 rabrabi 3417 reu8 3663 sbcco2 3738 reu8nf 3806 notabw 4234 ab0OLD 4306 sbcop1 5396 opeliunxp 5645 elrnmpt1 5856 elidinxp 5940 fvn0ssdmfun 6934 elabrex 7098 tfisi 7680 tfinds2 7685 opabex3d 7781 opabex3rd 7782 opabex3 7783 mpocurryd 8056 boxriin 8686 ixpiunwdom 9279 elirrv 9285 rabssnn0fi 13634 fproddivf 15625 prmodvdslcmf 16676 1mavmul 21605 ptbasfi 22640 elmptrab 22886 pcoass 24093 iundisj2 24618 dchrisumlema 26541 dchrisumlem2 26543 cusgrfilem2 27726 frgrncvvdeq 28574 frgr2wwlk1 28594 iundisj2f 30830 iundisj2fi 31020 bnj1014 32841 cvmsss2 33136 gonarlem 33256 riotarab 33575 reurab 33576 ax8dfeq 33680 xpord2ind 33721 xpord3ind 33727 bj-ssbid1ALT 34773 bj-cbvexw 34784 bj-sb 34796 finxpreclem6 35494 ralssiun 35505 wl-nfs1t 35623 wl-equsb4 35639 wl-euequf 35656 wl-ax11-lem8 35670 matunitlindflem1 35700 poimirlem26 35730 mblfinlem2 35742 sdclem2 35827 axc11-o 36892 rexzrexnn0 40542 elabrexg 42478 disjinfi 42620 dvnmptdivc 43369 iblsplitf 43401 vonn0ioo2 44118 vonn0icc2 44120 funressnvmo 44426 ichcircshi 44794 ichreuopeq 44813 paireqne 44851 reuopreuprim 44866 uspgrsprf1 45197 opeliun2xp 45556 |
Copyright terms: Public domain | W3C validator |