| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcoms | Structured version Visualization version GIF version | ||
| Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
| Ref | Expression |
|---|---|
| equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 2017 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equtr 2021 equeuclr 2023 spfw 2033 cbvalw 2035 alcomimw 2043 ax8 2115 elequ1 2116 ax9 2123 elequ2 2124 stdpc7 2251 sbequ12r 2253 cbvalv1 2339 cbval 2396 sb9 2517 ax9ALT 2724 sbralieALT 3318 rabrabi 3416 reurab 3663 reu8 3695 sbcco2 3771 reu8nf 3831 notabw 4266 sbcop1 5435 opeliunxp 5690 opeliun2xp 5691 elrnmpt1 5906 elidinxp 5999 fvn0ssdmfun 7012 elabrex 7182 elabrexg 7183 riotarab 7352 tfisi 7799 tfinds2 7804 opabex3d 7907 opabex3rd 7908 opabex3 7909 xpord2indlem 8087 xpord3inddlem 8094 mpocurryd 8209 boxriin 8874 ixpiunwdom 9501 elirrv 9508 elirrvOLD 9509 rabssnn0fi 13911 fproddivf 15912 prmodvdslcmf 16977 eqg0subg 19093 1mavmul 22451 ptbasfi 23484 elmptrab 23730 pcoass 24940 iundisj2 25466 dchrisumlema 27415 dchrisumlem2 27417 cusgrfilem2 29420 frgrncvvdeq 30271 frgr2wwlk1 30291 iundisj2f 32552 iundisj2fi 32753 bnj1014 34927 cvmsss2 35246 gonarlem 35366 ax8dfeq 35771 in-ax8 36197 ss-ax8 36198 bj-ssbid1ALT 36638 bj-cbvexw 36649 bj-sb 36660 finxpreclem6 37369 ralssiun 37380 wl-nfs1t 37510 wl-equsb4 37530 wl-euequf 37547 wl-ax11-lem8 37565 matunitlindflem1 37595 poimirlem26 37625 mblfinlem2 37637 sdclem2 37721 axc11-o 38929 evl1gprodd 42090 idomnnzgmulnz 42106 abbibw 42650 rexzrexnn0 42777 disjinfi 45170 dvnmptdivc 45920 iblsplitf 45952 vonn0ioo2 46672 vonn0icc2 46674 funressnvmo 47030 ichcircshi 47439 ichreuopeq 47458 paireqne 47496 reuopreuprim 47511 uspgrsprf1 48132 |
| Copyright terms: Public domain | W3C validator |