| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcoms | Structured version Visualization version GIF version | ||
| Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
| Ref | Expression |
|---|---|
| equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 2018 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: equtr 2022 equeuclr 2024 spfw 2034 cbvalw 2036 alcomimw 2044 ax8 2119 elequ1 2120 ax9 2127 elequ2 2128 stdpc7 2255 sbequ12r 2257 cbvalv1 2343 cbval 2400 sb9 2521 ax9ALT 2728 sbralieALT 3320 rabrabi 3415 reurab 3656 reu8 3688 sbcco2 3764 reu8nf 3824 notabw 4262 sbcop1 5431 opeliunxp 5686 opeliun2xp 5687 elrnmpt1 5904 elidinxp 5997 fvn0ssdmfun 7013 elabrex 7182 elabrexg 7183 riotarab 7351 tfisi 7795 tfinds2 7800 opabex3d 7903 opabex3rd 7904 opabex3 7905 xpord2indlem 8083 xpord3inddlem 8090 mpocurryd 8205 boxriin 8870 ixpiunwdom 9483 elirrv 9490 elirrvOLD 9491 rabssnn0fi 13895 fproddivf 15896 prmodvdslcmf 16961 eqg0subg 19110 1mavmul 22464 ptbasfi 23497 elmptrab 23743 pcoass 24952 iundisj2 25478 dchrisumlema 27427 dchrisumlem2 27429 cusgrfilem2 29437 frgrncvvdeq 30291 frgr2wwlk1 30311 iundisj2f 32572 iundisj2fi 32784 bnj1014 34994 cvmsss2 35339 gonarlem 35459 ax8dfeq 35861 in-ax8 36289 ss-ax8 36290 bj-ssbid1ALT 36730 bj-cbvexw 36741 bj-sb 36752 finxpreclem6 37461 ralssiun 37472 wl-nfs1t 37602 wl-equsb4 37622 wl-euequf 37639 matunitlindflem1 37676 poimirlem26 37706 mblfinlem2 37718 sdclem2 37802 axc11-o 39070 evl1gprodd 42230 idomnnzgmulnz 42246 abbibw 42795 rexzrexnn0 42921 disjinfi 45313 dvnmptdivc 46060 iblsplitf 46092 vonn0ioo2 46812 vonn0icc2 46814 funressnvmo 47169 ichcircshi 47578 ichreuopeq 47597 paireqne 47635 reuopreuprim 47650 uspgrsprf1 48271 |
| Copyright terms: Public domain | W3C validator |