Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equcoms | Structured version Visualization version GIF version |
Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 2024 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 |
This theorem is referenced by: equtr 2028 equeuclr 2030 spfw 2040 cbvalw 2042 alcomiw 2050 alcomiwOLD 2051 ax8 2116 elequ1 2117 ax9 2124 elequ2 2125 stdpc7 2247 sbequ12r 2249 cbvalv1 2342 cbval 2400 sb9 2525 ax9ALT 2735 sbralie 3404 rabrabi 3426 reu8 3672 sbcco2 3747 reu8nf 3815 notabw 4243 ab0OLD 4315 sbcop1 5406 opeliunxp 5655 elrnmpt1 5866 elidinxp 5950 fvn0ssdmfun 6949 elabrex 7113 tfisi 7699 tfinds2 7704 opabex3d 7801 opabex3rd 7802 opabex3 7803 mpocurryd 8076 boxriin 8711 ixpiunwdom 9327 elirrv 9333 rabssnn0fi 13704 fproddivf 15695 prmodvdslcmf 16746 1mavmul 21695 ptbasfi 22730 elmptrab 22976 pcoass 24185 iundisj2 24711 dchrisumlema 26634 dchrisumlem2 26636 cusgrfilem2 27821 frgrncvvdeq 28669 frgr2wwlk1 28689 iundisj2f 30925 iundisj2fi 31114 bnj1014 32937 cvmsss2 33232 gonarlem 33352 riotarab 33669 reurab 33670 ax8dfeq 33770 xpord2ind 33790 xpord3ind 33796 bj-ssbid1ALT 34842 bj-cbvexw 34853 bj-sb 34865 finxpreclem6 35563 ralssiun 35574 wl-nfs1t 35692 wl-equsb4 35708 wl-euequf 35725 wl-ax11-lem8 35739 matunitlindflem1 35769 poimirlem26 35799 mblfinlem2 35811 sdclem2 35896 axc11-o 36961 rexzrexnn0 40623 elabrexg 42559 disjinfi 42701 dvnmptdivc 43450 iblsplitf 43482 vonn0ioo2 44199 vonn0icc2 44201 funressnvmo 44507 ichcircshi 44875 ichreuopeq 44894 paireqne 44932 reuopreuprim 44947 uspgrsprf1 45278 opeliun2xp 45637 |
Copyright terms: Public domain | W3C validator |