| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcoms | Structured version Visualization version GIF version | ||
| Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
| Ref | Expression |
|---|---|
| equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 2015 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 |
| This theorem is referenced by: equtr 2019 equeuclr 2021 spfw 2031 cbvalw 2033 alcomimw 2041 ax8 2113 elequ1 2114 ax9 2121 elequ2 2122 stdpc7 2249 sbequ12r 2251 cbvalv1 2341 cbval 2401 sb9 2522 ax9ALT 2729 sbralieALT 3336 rabrabi 3433 reurab 3682 reu8 3714 sbcco2 3790 reu8nf 3850 notabw 4286 sbcop1 5460 opeliunxp 5718 opeliun2xp 5719 elrnmpt1 5937 elidinxp 6028 fvn0ssdmfun 7060 elabrex 7230 elabrexg 7231 riotarab 7398 tfisi 7848 tfinds2 7853 opabex3d 7958 opabex3rd 7959 opabex3 7960 xpord2indlem 8140 xpord3inddlem 8147 mpocurryd 8262 boxriin 8948 ixpiunwdom 9596 elirrv 9602 rabssnn0fi 13993 fproddivf 15990 prmodvdslcmf 17052 eqg0subg 19164 1mavmul 22471 ptbasfi 23504 elmptrab 23750 pcoass 24960 iundisj2 25487 dchrisumlema 27435 dchrisumlem2 27437 cusgrfilem2 29368 frgrncvvdeq 30222 frgr2wwlk1 30242 iundisj2f 32504 iundisj2fi 32708 bnj1014 34913 cvmsss2 35217 gonarlem 35337 ax8dfeq 35737 in-ax8 36163 ss-ax8 36164 bj-ssbid1ALT 36604 bj-cbvexw 36615 bj-sb 36626 finxpreclem6 37335 ralssiun 37346 wl-nfs1t 37476 wl-equsb4 37496 wl-euequf 37513 wl-ax11-lem8 37531 matunitlindflem1 37561 poimirlem26 37591 mblfinlem2 37603 sdclem2 37687 axc11-o 38890 evl1gprodd 42052 idomnnzgmulnz 42068 abbibw 42625 rexzrexnn0 42752 disjinfi 45143 dvnmptdivc 45897 iblsplitf 45929 vonn0ioo2 46649 vonn0icc2 46651 funressnvmo 47002 ichcircshi 47386 ichreuopeq 47405 paireqne 47443 reuopreuprim 47458 uspgrsprf1 48008 |
| Copyright terms: Public domain | W3C validator |