| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcoms | Structured version Visualization version GIF version | ||
| Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
| Ref | Expression |
|---|---|
| equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 2017 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equtr 2021 equeuclr 2023 spfw 2033 cbvalw 2035 alcomimw 2043 ax8 2115 elequ1 2116 ax9 2123 elequ2 2124 stdpc7 2251 sbequ12r 2253 cbvalv1 2339 cbval 2397 sb9 2518 ax9ALT 2725 sbralieALT 3329 rabrabi 3428 reurab 3675 reu8 3707 sbcco2 3783 reu8nf 3843 notabw 4279 sbcop1 5451 opeliunxp 5708 opeliun2xp 5709 elrnmpt1 5927 elidinxp 6018 fvn0ssdmfun 7049 elabrex 7219 elabrexg 7220 riotarab 7389 tfisi 7838 tfinds2 7843 opabex3d 7947 opabex3rd 7948 opabex3 7949 xpord2indlem 8129 xpord3inddlem 8136 mpocurryd 8251 boxriin 8916 ixpiunwdom 9550 elirrv 9556 rabssnn0fi 13958 fproddivf 15960 prmodvdslcmf 17025 eqg0subg 19135 1mavmul 22442 ptbasfi 23475 elmptrab 23721 pcoass 24931 iundisj2 25457 dchrisumlema 27406 dchrisumlem2 27408 cusgrfilem2 29391 frgrncvvdeq 30245 frgr2wwlk1 30265 iundisj2f 32526 iundisj2fi 32727 bnj1014 34958 cvmsss2 35268 gonarlem 35388 ax8dfeq 35793 in-ax8 36219 ss-ax8 36220 bj-ssbid1ALT 36660 bj-cbvexw 36671 bj-sb 36682 finxpreclem6 37391 ralssiun 37402 wl-nfs1t 37532 wl-equsb4 37552 wl-euequf 37569 wl-ax11-lem8 37587 matunitlindflem1 37617 poimirlem26 37647 mblfinlem2 37659 sdclem2 37743 axc11-o 38951 evl1gprodd 42112 idomnnzgmulnz 42128 abbibw 42672 rexzrexnn0 42799 disjinfi 45193 dvnmptdivc 45943 iblsplitf 45975 vonn0ioo2 46695 vonn0icc2 46697 funressnvmo 47050 ichcircshi 47459 ichreuopeq 47478 paireqne 47516 reuopreuprim 47531 uspgrsprf1 48139 |
| Copyright terms: Public domain | W3C validator |