| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equcoms | Structured version Visualization version GIF version | ||
| Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
| Ref | Expression |
|---|---|
| equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equcomi 2016 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equtr 2020 equeuclr 2022 spfw 2032 cbvalw 2034 alcomimw 2042 ax8 2114 elequ1 2115 ax9 2122 elequ2 2123 stdpc7 2250 sbequ12r 2252 cbvalv1 2342 cbval 2402 sb9 2523 ax9ALT 2730 sbralieALT 3338 rabrabi 3435 reurab 3684 reu8 3716 sbcco2 3792 reu8nf 3852 notabw 4288 sbcop1 5463 opeliunxp 5721 opeliun2xp 5722 elrnmpt1 5940 elidinxp 6031 fvn0ssdmfun 7064 elabrex 7234 elabrexg 7235 riotarab 7404 tfisi 7854 tfinds2 7859 opabex3d 7964 opabex3rd 7965 opabex3 7966 xpord2indlem 8146 xpord3inddlem 8153 mpocurryd 8268 boxriin 8954 ixpiunwdom 9604 elirrv 9610 rabssnn0fi 14004 fproddivf 16003 prmodvdslcmf 17067 eqg0subg 19179 1mavmul 22486 ptbasfi 23519 elmptrab 23765 pcoass 24975 iundisj2 25502 dchrisumlema 27451 dchrisumlem2 27453 cusgrfilem2 29436 frgrncvvdeq 30290 frgr2wwlk1 30310 iundisj2f 32571 iundisj2fi 32774 bnj1014 34992 cvmsss2 35296 gonarlem 35416 ax8dfeq 35816 in-ax8 36242 ss-ax8 36243 bj-ssbid1ALT 36683 bj-cbvexw 36694 bj-sb 36705 finxpreclem6 37414 ralssiun 37425 wl-nfs1t 37555 wl-equsb4 37575 wl-euequf 37592 wl-ax11-lem8 37610 matunitlindflem1 37640 poimirlem26 37670 mblfinlem2 37682 sdclem2 37766 axc11-o 38969 evl1gprodd 42130 idomnnzgmulnz 42146 abbibw 42700 rexzrexnn0 42827 disjinfi 45216 dvnmptdivc 45967 iblsplitf 45999 vonn0ioo2 46719 vonn0icc2 46721 funressnvmo 47074 ichcircshi 47468 ichreuopeq 47487 paireqne 47525 reuopreuprim 47540 uspgrsprf1 48122 |
| Copyright terms: Public domain | W3C validator |