![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equcoms | Structured version Visualization version GIF version |
Description: An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
equcoms.1 | ⊢ (𝑥 = 𝑦 → 𝜑) |
Ref | Expression |
---|---|
equcoms | ⊢ (𝑦 = 𝑥 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 2016 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
2 | equcoms.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑦 = 𝑥 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: equtr 2020 equeuclr 2022 spfw 2032 cbvalw 2034 alcomimw 2042 ax8 2114 elequ1 2115 ax9 2122 elequ2 2123 stdpc7 2251 sbequ12r 2253 cbvalv1 2347 cbval 2406 sb9 2527 ax9ALT 2735 sbralieALT 3367 rabrabi 3463 reurab 3723 reu8 3755 sbcco2 3831 reu8nf 3899 notabw 4332 ab0OLD 4403 sbcop1 5508 opeliunxp 5767 elrnmpt1 5983 elidinxp 6073 fvn0ssdmfun 7108 elabrex 7279 elabrexg 7280 riotarab 7447 tfisi 7896 tfinds2 7901 opabex3d 8006 opabex3rd 8007 opabex3 8008 xpord2indlem 8188 xpord3inddlem 8195 mpocurryd 8310 boxriin 8998 ixpiunwdom 9659 elirrv 9665 rabssnn0fi 14037 fproddivf 16035 prmodvdslcmf 17094 eqg0subg 19236 1mavmul 22575 ptbasfi 23610 elmptrab 23856 pcoass 25076 iundisj2 25603 dchrisumlema 27550 dchrisumlem2 27552 cusgrfilem2 29492 frgrncvvdeq 30341 frgr2wwlk1 30361 iundisj2f 32612 iundisj2fi 32802 bnj1014 34937 cvmsss2 35242 gonarlem 35362 ax8dfeq 35762 in-ax8 36190 ss-ax8 36191 bj-ssbid1ALT 36631 bj-cbvexw 36642 bj-sb 36653 finxpreclem6 37362 ralssiun 37373 wl-nfs1t 37491 wl-equsb4 37511 wl-euequf 37528 wl-ax11-lem8 37546 matunitlindflem1 37576 poimirlem26 37606 mblfinlem2 37618 sdclem2 37702 axc11-o 38907 evl1gprodd 42074 idomnnzgmulnz 42090 abbibw 42632 rexzrexnn0 42760 disjinfi 45099 dvnmptdivc 45859 iblsplitf 45891 vonn0ioo2 46611 vonn0icc2 46613 funressnvmo 46960 ichcircshi 47328 ichreuopeq 47347 paireqne 47385 reuopreuprim 47400 uspgrsprf1 47870 opeliun2xp 48057 |
Copyright terms: Public domain | W3C validator |