Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssbid1 Structured version   Visualization version   GIF version

Theorem bj-ssbid1 34747
Description: A special case of sbequ1 2247. (Contributed by BJ, 22-Dec-2020.)
Assertion
Ref Expression
bj-ssbid1 (𝜑 → [𝑥 / 𝑥]𝜑)

Proof of Theorem bj-ssbid1
StepHypRef Expression
1 equid 2020 . 2 𝑥 = 𝑥
2 sbequ1 2247 . 2 (𝑥 = 𝑥 → (𝜑 → [𝑥 / 𝑥]𝜑))
31, 2ax-mp 5 1 (𝜑 → [𝑥 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-12 2177
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-sb 2073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator