Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssbid1 Structured version   Visualization version   GIF version

Theorem bj-ssbid1 33990
Description: A special case of sbequ1 2242. (Contributed by BJ, 22-Dec-2020.)
Assertion
Ref Expression
bj-ssbid1 (𝜑 → [𝑥 / 𝑥]𝜑)

Proof of Theorem bj-ssbid1
StepHypRef Expression
1 equid 2013 . 2 𝑥 = 𝑥
2 sbequ1 2242 . 2 (𝑥 = 𝑥 → (𝜑 → [𝑥 / 𝑥]𝜑))
31, 2ax-mp 5 1 (𝜑 → [𝑥 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-12 2170
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1775  df-sb 2064
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator