 Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssbid1ALT Structured version   Visualization version   GIF version

Theorem bj-ssbid1ALT 33154
 Description: Alternate proof of bj-ssbid1 33153, not using bj-ssbequ1 33150. (Contributed by BJ, 22-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-ssbid1ALT (𝜑 → [𝑥/𝑥]b𝜑)

Proof of Theorem bj-ssbid1ALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax12v 2214 . . . . 5 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
21equcoms 2119 . . . 4 (𝑦 = 𝑥 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
32com12 32 . . 3 (𝜑 → (𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦𝜑)))
43alrimiv 2023 . 2 (𝜑 → ∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦𝜑)))
5 df-ssb 33127 . 2 ([𝑥/𝑥]b𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦𝜑)))
64, 5sylibr 226 1 (𝜑 → [𝑥/𝑥]b𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1651  [wssb 33126 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-12 2213 This theorem depends on definitions:  df-bi 199  df-an 386  df-ex 1876  df-ssb 33127 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator