Step | Hyp | Ref
| Expression |
1 | | df-sb 2068 |
. 2
⊢ ([𝑥 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
2 | | sp 2176 |
. . . . 5
⊢
(∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) |
3 | 2 | imim2i 16 |
. . . 4
⊢ ((𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → (𝑦 = 𝑥 → (𝑥 = 𝑦 → 𝜑))) |
4 | 3 | alimi 1814 |
. . 3
⊢
(∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → ∀𝑦(𝑦 = 𝑥 → (𝑥 = 𝑦 → 𝜑))) |
5 | | pm2.21 123 |
. . . . . 6
⊢ (¬
𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝜑)) |
6 | | equcomi 2020 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) |
7 | 6 | imim1i 63 |
. . . . . 6
⊢ ((𝑥 = 𝑦 → 𝜑) → (𝑦 = 𝑥 → 𝜑)) |
8 | 5, 7 | ja 186 |
. . . . 5
⊢ ((𝑦 = 𝑥 → (𝑥 = 𝑦 → 𝜑)) → (𝑦 = 𝑥 → 𝜑)) |
9 | 8 | alimi 1814 |
. . . 4
⊢
(∀𝑦(𝑦 = 𝑥 → (𝑥 = 𝑦 → 𝜑)) → ∀𝑦(𝑦 = 𝑥 → 𝜑)) |
10 | | ax6ev 1973 |
. . . 4
⊢
∃𝑦 𝑦 = 𝑥 |
11 | | 19.23v 1945 |
. . . . 5
⊢
(∀𝑦(𝑦 = 𝑥 → 𝜑) ↔ (∃𝑦 𝑦 = 𝑥 → 𝜑)) |
12 | 11 | biimpi 215 |
. . . 4
⊢
(∀𝑦(𝑦 = 𝑥 → 𝜑) → (∃𝑦 𝑦 = 𝑥 → 𝜑)) |
13 | 9, 10, 12 | mpisyl 21 |
. . 3
⊢
(∀𝑦(𝑦 = 𝑥 → (𝑥 = 𝑦 → 𝜑)) → 𝜑) |
14 | 4, 13 | syl 17 |
. 2
⊢
(∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) → 𝜑) |
15 | 1, 14 | sylbi 216 |
1
⊢ ([𝑥 / 𝑥]𝜑 → 𝜑) |