Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssbid2 Structured version   Visualization version   GIF version

Theorem bj-ssbid2 34022
Description: A special case of sbequ2 2252. (Contributed by BJ, 22-Dec-2020.)
Assertion
Ref Expression
bj-ssbid2 ([𝑥 / 𝑥]𝜑𝜑)

Proof of Theorem bj-ssbid2
StepHypRef Expression
1 equid 2020 . 2 𝑥 = 𝑥
2 sbequ2 2252 . 2 (𝑥 = 𝑥 → ([𝑥 / 𝑥]𝜑𝜑))
31, 2ax-mp 5 1 ([𝑥 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-12 2179
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator