Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-subst Structured version   Visualization version   GIF version

Theorem bj-subst 34769
Description: Proof of sbalex 2238 from core axioms, ax-10 2139 (modal5), and bj-ax12 34765. (Contributed by BJ, 29-Dec-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-subst (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-subst
StepHypRef Expression
1 bj-ax12 34765 . . . 4 𝑥(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
2 pm3.31 449 . . . . 5 ((𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))) → ((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
32aleximi 1835 . . . 4 (∀𝑥(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))) → (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝑥(𝑥 = 𝑦𝜑)))
41, 3ax-mp 5 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝑥(𝑥 = 𝑦𝜑))
5 hbe1a 2142 . . 3 (∃𝑥𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
64, 5syl 17 . 2 (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
7 equs4v 2004 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
86, 7impbii 208 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator