Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-wnfenf Structured version   Visualization version   GIF version

Theorem bj-wnfenf 34902
Description: When 𝜑 is substituted for 𝜓, this statement expresses that weak nonfreeness implies the existential form of nonfreeness. (Contributed by BJ, 9-Dec-2023.)
Assertion
Ref Expression
bj-wnfenf ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑𝜓))

Proof of Theorem bj-wnfenf
StepHypRef Expression
1 bj-wnf1 34899 . 2 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓))
2 bj-19.21bit 34872 . 2 ((∃𝑥𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑𝜓))
31, 2sylg 1825 1 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-or 845  df-ex 1783  df-nf 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator