Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1275 Structured version   Visualization version   GIF version

Theorem bnj1275 32693
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1275.1 (𝜑 → ∃𝑥(𝜓𝜒))
bnj1275.2 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
bnj1275 (𝜑 → ∃𝑥(𝜑𝜓𝜒))

Proof of Theorem bnj1275
StepHypRef Expression
1 bnj1275.2 . . 3 (𝜑 → ∀𝑥𝜑)
2 bnj1275.1 . . 3 (𝜑 → ∃𝑥(𝜓𝜒))
31, 2bnj596 32626 . 2 (𝜑 → ∃𝑥(𝜑 ∧ (𝜓𝜒)))
4 3anass 1093 . 2 ((𝜑𝜓𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
53, 4bnj1198 32675 1 (𝜑 → ∃𝑥(𝜑𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-ex 1784  df-nf 1788
This theorem is referenced by:  bnj1345  32704  bnj1279  32898
  Copyright terms: Public domain W3C validator