|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1275 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj1275.1 | ⊢ (𝜑 → ∃𝑥(𝜓 ∧ 𝜒)) | 
| bnj1275.2 | ⊢ (𝜑 → ∀𝑥𝜑) | 
| Ref | Expression | 
|---|---|
| bnj1275 | ⊢ (𝜑 → ∃𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1275.2 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | bnj1275.1 | . . 3 ⊢ (𝜑 → ∃𝑥(𝜓 ∧ 𝜒)) | |
| 3 | 1, 2 | bnj596 34760 | . 2 ⊢ (𝜑 → ∃𝑥(𝜑 ∧ (𝜓 ∧ 𝜒))) | 
| 4 | 3anass 1095 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 5 | 3, 4 | bnj1198 34809 | 1 ⊢ (𝜑 → ∃𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∀wal 1538 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: bnj1345 34838 bnj1279 35032 | 
| Copyright terms: Public domain | W3C validator |