Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1275 Structured version   Visualization version   GIF version

Theorem bnj1275 31766
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1275.1 (𝜑 → ∃𝑥(𝜓𝜒))
bnj1275.2 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
bnj1275 (𝜑 → ∃𝑥(𝜑𝜓𝜒))

Proof of Theorem bnj1275
StepHypRef Expression
1 bnj1275.2 . . 3 (𝜑 → ∀𝑥𝜑)
2 bnj1275.1 . . 3 (𝜑 → ∃𝑥(𝜓𝜒))
31, 2bnj596 31698 . 2 (𝜑 → ∃𝑥(𝜑 ∧ (𝜓𝜒)))
4 3anass 1077 . 2 ((𝜑𝜓𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
53, 4bnj1198 31748 1 (𝜑 → ∃𝑥(𝜑𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069  wal 1506  wex 1743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-10 2080  ax-12 2107
This theorem depends on definitions:  df-bi 199  df-an 388  df-3an 1071  df-ex 1744  df-nf 1748
This theorem is referenced by:  bnj1345  31777  bnj1279  31968
  Copyright terms: Public domain W3C validator