| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1345 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1345.1 | ⊢ (𝜑 → ∃𝑥(𝜓 ∧ 𝜒)) |
| bnj1345.2 | ⊢ (𝜃 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
| bnj1345.3 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| bnj1345 | ⊢ (𝜑 → ∃𝑥𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1345.1 | . . 3 ⊢ (𝜑 → ∃𝑥(𝜓 ∧ 𝜒)) | |
| 2 | bnj1345.3 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 3 | 1, 2 | bnj1275 34827 | . 2 ⊢ (𝜑 → ∃𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) |
| 4 | bnj1345.2 | . 2 ⊢ (𝜃 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | |
| 5 | 3, 4 | bnj1198 34809 | 1 ⊢ (𝜑 → ∃𝑥𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: bnj1379 34844 bnj1521 34865 |
| Copyright terms: Public domain | W3C validator |