Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1345 Structured version   Visualization version   GIF version

Theorem bnj1345 32804
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1345.1 (𝜑 → ∃𝑥(𝜓𝜒))
bnj1345.2 (𝜃 ↔ (𝜑𝜓𝜒))
bnj1345.3 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
bnj1345 (𝜑 → ∃𝑥𝜃)

Proof of Theorem bnj1345
StepHypRef Expression
1 bnj1345.1 . . 3 (𝜑 → ∃𝑥(𝜓𝜒))
2 bnj1345.3 . . 3 (𝜑 → ∀𝑥𝜑)
31, 2bnj1275 32793 . 2 (𝜑 → ∃𝑥(𝜑𝜓𝜒))
4 bnj1345.2 . 2 (𝜃 ↔ (𝜑𝜓𝜒))
53, 4bnj1198 32775 1 (𝜑 → ∃𝑥𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-ex 1783  df-nf 1787
This theorem is referenced by:  bnj1379  32810  bnj1521  32831
  Copyright terms: Public domain W3C validator