Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1198 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1198.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
bnj1198.2 | ⊢ (𝜓′ ↔ 𝜓) |
Ref | Expression |
---|---|
bnj1198 | ⊢ (𝜑 → ∃𝑥𝜓′) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1198.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | bnj1198.2 | . . 3 ⊢ (𝜓′ ↔ 𝜓) | |
3 | 2 | exbii 1851 | . 2 ⊢ (∃𝑥𝜓′ ↔ ∃𝑥𝜓) |
4 | 1, 3 | sylibr 233 | 1 ⊢ (𝜑 → ∃𝑥𝜓′) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: bnj1209 32676 bnj1275 32693 bnj1340 32703 bnj1345 32704 bnj605 32787 bnj607 32796 bnj906 32810 bnj908 32811 bnj1189 32889 bnj1450 32930 bnj1312 32938 |
Copyright terms: Public domain | W3C validator |