Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj596 Structured version   Visualization version   GIF version

Theorem bnj596 32296
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj596.1 (𝜑 → ∀𝑥𝜑)
bnj596.2 (𝜑 → ∃𝑥𝜓)
Assertion
Ref Expression
bnj596 (𝜑 → ∃𝑥(𝜑𝜓))

Proof of Theorem bnj596
StepHypRef Expression
1 bnj596.2 . . 3 (𝜑 → ∃𝑥𝜓)
21ancli 552 . 2 (𝜑 → (𝜑 ∧ ∃𝑥𝜓))
3 bnj596.1 . . . 4 (𝜑 → ∀𝑥𝜑)
43nf5i 2150 . . 3 𝑥𝜑
5419.42 2238 . 2 (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))
62, 5sylibr 237 1 (𝜑 → ∃𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1540  wex 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-10 2145  ax-12 2179
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1787  df-nf 1791
This theorem is referenced by:  bnj1275  32364  bnj1340  32374  bnj594  32463  bnj1398  32585
  Copyright terms: Public domain W3C validator