| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj596 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj596.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| bnj596.2 | ⊢ (𝜑 → ∃𝑥𝜓) |
| Ref | Expression |
|---|---|
| bnj596 | ⊢ (𝜑 → ∃𝑥(𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj596.2 | . . 3 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | 1 | ancli 548 | . 2 ⊢ (𝜑 → (𝜑 ∧ ∃𝑥𝜓)) |
| 3 | bnj596.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 4 | 3 | nf5i 2145 | . . 3 ⊢ Ⅎ𝑥𝜑 |
| 5 | 4 | 19.42 2235 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
| 6 | 2, 5 | sylibr 234 | 1 ⊢ (𝜑 → ∃𝑥(𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: bnj1275 34786 bnj1340 34796 bnj594 34885 bnj1398 35007 |
| Copyright terms: Public domain | W3C validator |