Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj596 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj596.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
bnj596.2 | ⊢ (𝜑 → ∃𝑥𝜓) |
Ref | Expression |
---|---|
bnj596 | ⊢ (𝜑 → ∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj596.2 | . . 3 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | 1 | ancli 552 | . 2 ⊢ (𝜑 → (𝜑 ∧ ∃𝑥𝜓)) |
3 | bnj596.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
4 | 3 | nf5i 2150 | . . 3 ⊢ Ⅎ𝑥𝜑 |
5 | 4 | 19.42 2238 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) |
6 | 2, 5 | sylibr 237 | 1 ⊢ (𝜑 → ∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∀wal 1540 ∃wex 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-10 2145 ax-12 2179 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1787 df-nf 1791 |
This theorem is referenced by: bnj1275 32364 bnj1340 32374 bnj594 32463 bnj1398 32585 |
Copyright terms: Public domain | W3C validator |