Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1379 Structured version   Visualization version   GIF version

Theorem bnj1379 32095
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1379.1 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
bnj1379.2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
bnj1379.3 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
bnj1379.5 (𝜒 ↔ (𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
bnj1379.6 (𝜃 ↔ (𝜒𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
bnj1379.7 (𝜏 ↔ (𝜃𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
Assertion
Ref Expression
bnj1379 (𝜓 → Fun 𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥,𝑦,𝑧   𝑥,𝐷   𝜑,𝑔   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓)   𝜓(𝑓,𝑔)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑔)   𝜃(𝑥,𝑦,𝑧,𝑓,𝑔)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐷(𝑦,𝑧,𝑓,𝑔)

Proof of Theorem bnj1379
StepHypRef Expression
1 bnj1379.3 . . . . 5 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
2 bnj1379.1 . . . . . . . 8 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
32bnj1095 32046 . . . . . . 7 (𝜑 → ∀𝑓𝜑)
43nf5i 2144 . . . . . 6 𝑓𝜑
5 nfra1 3217 . . . . . 6 𝑓𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)
64, 5nfan 1894 . . . . 5 𝑓(𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
71, 6nfxfr 1847 . . . 4 𝑓𝜓
82bnj946 32039 . . . . . . . 8 (𝜑 ↔ ∀𝑓(𝑓𝐴 → Fun 𝑓))
98biimpi 218 . . . . . . 7 (𝜑 → ∀𝑓(𝑓𝐴 → Fun 𝑓))
10919.21bi 2181 . . . . . 6 (𝜑 → (𝑓𝐴 → Fun 𝑓))
111, 10bnj832 32022 . . . . 5 (𝜓 → (𝑓𝐴 → Fun 𝑓))
12 funrel 6365 . . . . 5 (Fun 𝑓 → Rel 𝑓)
1311, 12syl6 35 . . . 4 (𝜓 → (𝑓𝐴 → Rel 𝑓))
147, 13ralrimi 3214 . . 3 (𝜓 → ∀𝑓𝐴 Rel 𝑓)
15 reluni 5684 . . 3 (Rel 𝐴 ↔ ∀𝑓𝐴 Rel 𝑓)
1614, 15sylibr 236 . 2 (𝜓 → Rel 𝐴)
17 bnj1379.5 . . . . . 6 (𝜒 ↔ (𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
18 eluni2 4834 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑓𝐴𝑥, 𝑦⟩ ∈ 𝑓)
1918biimpi 218 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑓𝐴𝑥, 𝑦⟩ ∈ 𝑓)
2019bnj1196 32059 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑓(𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
2117, 20bnj836 32024 . . . . . . . . 9 (𝜒 → ∃𝑓(𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
22 bnj1379.6 . . . . . . . . 9 (𝜃 ↔ (𝜒𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
23 nfv 1909 . . . . . . . . . . . 12 𝑓𝑥, 𝑦⟩ ∈ 𝐴
24 nfv 1909 . . . . . . . . . . . 12 𝑓𝑥, 𝑧⟩ ∈ 𝐴
257, 23, 24nf3an 1896 . . . . . . . . . . 11 𝑓(𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴)
2617, 25nfxfr 1847 . . . . . . . . . 10 𝑓𝜒
2726nf5ri 2188 . . . . . . . . 9 (𝜒 → ∀𝑓𝜒)
2821, 22, 27bnj1345 32089 . . . . . . . 8 (𝜒 → ∃𝑓𝜃)
2917simp3bi 1142 . . . . . . . . . . . . 13 (𝜒 → ⟨𝑥, 𝑧⟩ ∈ 𝐴)
3022, 29bnj835 32023 . . . . . . . . . . . 12 (𝜃 → ⟨𝑥, 𝑧⟩ ∈ 𝐴)
31 eluni2 4834 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑔𝐴𝑥, 𝑧⟩ ∈ 𝑔)
3231biimpi 218 . . . . . . . . . . . . 13 (⟨𝑥, 𝑧⟩ ∈ 𝐴 → ∃𝑔𝐴𝑥, 𝑧⟩ ∈ 𝑔)
3332bnj1196 32059 . . . . . . . . . . . 12 (⟨𝑥, 𝑧⟩ ∈ 𝐴 → ∃𝑔(𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
3430, 33syl 17 . . . . . . . . . . 11 (𝜃 → ∃𝑔(𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
35 bnj1379.7 . . . . . . . . . . 11 (𝜏 ↔ (𝜃𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
36 nfv 1909 . . . . . . . . . . . . . . . . . 18 𝑔𝜑
37 nfra2w 3225 . . . . . . . . . . . . . . . . . 18 𝑔𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)
3836, 37nfan 1894 . . . . . . . . . . . . . . . . 17 𝑔(𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
391, 38nfxfr 1847 . . . . . . . . . . . . . . . 16 𝑔𝜓
40 nfv 1909 . . . . . . . . . . . . . . . 16 𝑔𝑥, 𝑦⟩ ∈ 𝐴
41 nfv 1909 . . . . . . . . . . . . . . . 16 𝑔𝑥, 𝑧⟩ ∈ 𝐴
4239, 40, 41nf3an 1896 . . . . . . . . . . . . . . 15 𝑔(𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴)
4317, 42nfxfr 1847 . . . . . . . . . . . . . 14 𝑔𝜒
44 nfv 1909 . . . . . . . . . . . . . 14 𝑔 𝑓𝐴
45 nfv 1909 . . . . . . . . . . . . . 14 𝑔𝑥, 𝑦⟩ ∈ 𝑓
4643, 44, 45nf3an 1896 . . . . . . . . . . . . 13 𝑔(𝜒𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓)
4722, 46nfxfr 1847 . . . . . . . . . . . 12 𝑔𝜃
4847nf5ri 2188 . . . . . . . . . . 11 (𝜃 → ∀𝑔𝜃)
4934, 35, 48bnj1345 32089 . . . . . . . . . 10 (𝜃 → ∃𝑔𝜏)
501simprbi 499 . . . . . . . . . . . . . . . . . 18 (𝜓 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5117, 50bnj835 32023 . . . . . . . . . . . . . . . . 17 (𝜒 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5222, 51bnj835 32023 . . . . . . . . . . . . . . . 16 (𝜃 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5335, 52bnj835 32023 . . . . . . . . . . . . . . 15 (𝜏 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5422, 35bnj1219 32065 . . . . . . . . . . . . . . 15 (𝜏𝑓𝐴)
5553, 54bnj1294 32082 . . . . . . . . . . . . . 14 (𝜏 → ∀𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5635simp2bi 1141 . . . . . . . . . . . . . 14 (𝜏𝑔𝐴)
5755, 56bnj1294 32082 . . . . . . . . . . . . 13 (𝜏 → (𝑓𝐷) = (𝑔𝐷))
5857fveq1d 6665 . . . . . . . . . . . 12 (𝜏 → ((𝑓𝐷)‘𝑥) = ((𝑔𝐷)‘𝑥))
5922simp3bi 1142 . . . . . . . . . . . . . . . . 17 (𝜃 → ⟨𝑥, 𝑦⟩ ∈ 𝑓)
6035, 59bnj835 32023 . . . . . . . . . . . . . . . 16 (𝜏 → ⟨𝑥, 𝑦⟩ ∈ 𝑓)
61 vex 3496 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
62 vex 3496 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
6361, 62opeldm 5769 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ 𝑓𝑥 ∈ dom 𝑓)
6460, 63syl 17 . . . . . . . . . . . . . . 15 (𝜏𝑥 ∈ dom 𝑓)
65 vex 3496 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
6661, 65opeldm 5769 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑧⟩ ∈ 𝑔𝑥 ∈ dom 𝑔)
6735, 66bnj837 32025 . . . . . . . . . . . . . . 15 (𝜏𝑥 ∈ dom 𝑔)
6864, 67elind 4169 . . . . . . . . . . . . . 14 (𝜏𝑥 ∈ (dom 𝑓 ∩ dom 𝑔))
69 bnj1379.2 . . . . . . . . . . . . . 14 𝐷 = (dom 𝑓 ∩ dom 𝑔)
7068, 69eleqtrrdi 2922 . . . . . . . . . . . . 13 (𝜏𝑥𝐷)
7170fvresd 6683 . . . . . . . . . . . 12 (𝜏 → ((𝑓𝐷)‘𝑥) = (𝑓𝑥))
7270fvresd 6683 . . . . . . . . . . . 12 (𝜏 → ((𝑔𝐷)‘𝑥) = (𝑔𝑥))
7358, 71, 723eqtr3d 2862 . . . . . . . . . . 11 (𝜏 → (𝑓𝑥) = (𝑔𝑥))
742biimpi 218 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑓𝐴 Fun 𝑓)
751, 74bnj832 32022 . . . . . . . . . . . . . . . 16 (𝜓 → ∀𝑓𝐴 Fun 𝑓)
7617, 75bnj835 32023 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑓𝐴 Fun 𝑓)
7722, 76bnj835 32023 . . . . . . . . . . . . . 14 (𝜃 → ∀𝑓𝐴 Fun 𝑓)
7835, 77bnj835 32023 . . . . . . . . . . . . 13 (𝜏 → ∀𝑓𝐴 Fun 𝑓)
7978, 54bnj1294 32082 . . . . . . . . . . . 12 (𝜏 → Fun 𝑓)
80 funopfv 6710 . . . . . . . . . . . 12 (Fun 𝑓 → (⟨𝑥, 𝑦⟩ ∈ 𝑓 → (𝑓𝑥) = 𝑦))
8179, 60, 80sylc 65 . . . . . . . . . . 11 (𝜏 → (𝑓𝑥) = 𝑦)
82 funeq 6368 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
8382, 78, 56rspcdva 3623 . . . . . . . . . . . 12 (𝜏 → Fun 𝑔)
8435simp3bi 1142 . . . . . . . . . . . 12 (𝜏 → ⟨𝑥, 𝑧⟩ ∈ 𝑔)
85 funopfv 6710 . . . . . . . . . . . 12 (Fun 𝑔 → (⟨𝑥, 𝑧⟩ ∈ 𝑔 → (𝑔𝑥) = 𝑧))
8683, 84, 85sylc 65 . . . . . . . . . . 11 (𝜏 → (𝑔𝑥) = 𝑧)
8773, 81, 863eqtr3d 2862 . . . . . . . . . 10 (𝜏𝑦 = 𝑧)
8849, 87bnj593 32009 . . . . . . . . 9 (𝜃 → ∃𝑔 𝑦 = 𝑧)
8988bnj937 32036 . . . . . . . 8 (𝜃𝑦 = 𝑧)
9028, 89bnj593 32009 . . . . . . 7 (𝜒 → ∃𝑓 𝑦 = 𝑧)
9190bnj937 32036 . . . . . 6 (𝜒𝑦 = 𝑧)
9217, 91sylbir 237 . . . . 5 ((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)
93923expib 1117 . . . 4 (𝜓 → ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
9493alrimivv 1923 . . 3 (𝜓 → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
9594alrimiv 1922 . 2 (𝜓 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
96 dffun4 6360 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
9716, 95, 96sylanbrc 585 1 (𝜓 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082  wal 1529   = wceq 1531  wex 1774  wcel 2108  wral 3136  wrex 3137  cin 3933  cop 4565   cuni 4830  dom cdm 5548  cres 5550  Rel wrel 5553  Fun wfun 6342  cfv 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-res 5560  df-iota 6307  df-fun 6350  df-fv 6356
This theorem is referenced by:  bnj1383  32096
  Copyright terms: Public domain W3C validator