Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1379 Structured version   Visualization version   GIF version

Theorem bnj1379 34813
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1379.1 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
bnj1379.2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
bnj1379.3 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
bnj1379.5 (𝜒 ↔ (𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
bnj1379.6 (𝜃 ↔ (𝜒𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
bnj1379.7 (𝜏 ↔ (𝜃𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
Assertion
Ref Expression
bnj1379 (𝜓 → Fun 𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥,𝑦,𝑧   𝑥,𝐷   𝜑,𝑔   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓)   𝜓(𝑓,𝑔)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑔)   𝜃(𝑥,𝑦,𝑧,𝑓,𝑔)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐷(𝑦,𝑧,𝑓,𝑔)

Proof of Theorem bnj1379
StepHypRef Expression
1 bnj1379.3 . . . . 5 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
2 bnj1379.1 . . . . . . . 8 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
32bnj1095 34764 . . . . . . 7 (𝜑 → ∀𝑓𝜑)
43nf5i 2147 . . . . . 6 𝑓𝜑
5 nfra1 3253 . . . . . 6 𝑓𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)
64, 5nfan 1899 . . . . 5 𝑓(𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
71, 6nfxfr 1853 . . . 4 𝑓𝜓
82bnj946 34757 . . . . . . . 8 (𝜑 ↔ ∀𝑓(𝑓𝐴 → Fun 𝑓))
98biimpi 216 . . . . . . 7 (𝜑 → ∀𝑓(𝑓𝐴 → Fun 𝑓))
10919.21bi 2190 . . . . . 6 (𝜑 → (𝑓𝐴 → Fun 𝑓))
111, 10bnj832 34741 . . . . 5 (𝜓 → (𝑓𝐴 → Fun 𝑓))
12 funrel 6499 . . . . 5 (Fun 𝑓 → Rel 𝑓)
1311, 12syl6 35 . . . 4 (𝜓 → (𝑓𝐴 → Rel 𝑓))
147, 13ralrimi 3227 . . 3 (𝜓 → ∀𝑓𝐴 Rel 𝑓)
15 reluni 5761 . . 3 (Rel 𝐴 ↔ ∀𝑓𝐴 Rel 𝑓)
1614, 15sylibr 234 . 2 (𝜓 → Rel 𝐴)
17 bnj1379.5 . . . . . 6 (𝜒 ↔ (𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
18 eluni2 4862 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑓𝐴𝑥, 𝑦⟩ ∈ 𝑓)
1918biimpi 216 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑓𝐴𝑥, 𝑦⟩ ∈ 𝑓)
2019bnj1196 34777 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑓(𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
2117, 20bnj836 34743 . . . . . . . . 9 (𝜒 → ∃𝑓(𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
22 bnj1379.6 . . . . . . . . 9 (𝜃 ↔ (𝜒𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
23 nfv 1914 . . . . . . . . . . . 12 𝑓𝑥, 𝑦⟩ ∈ 𝐴
24 nfv 1914 . . . . . . . . . . . 12 𝑓𝑥, 𝑧⟩ ∈ 𝐴
257, 23, 24nf3an 1901 . . . . . . . . . . 11 𝑓(𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴)
2617, 25nfxfr 1853 . . . . . . . . . 10 𝑓𝜒
2726nf5ri 2196 . . . . . . . . 9 (𝜒 → ∀𝑓𝜒)
2821, 22, 27bnj1345 34807 . . . . . . . 8 (𝜒 → ∃𝑓𝜃)
2917simp3bi 1147 . . . . . . . . . . . . 13 (𝜒 → ⟨𝑥, 𝑧⟩ ∈ 𝐴)
3022, 29bnj835 34742 . . . . . . . . . . . 12 (𝜃 → ⟨𝑥, 𝑧⟩ ∈ 𝐴)
31 eluni2 4862 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑔𝐴𝑥, 𝑧⟩ ∈ 𝑔)
3231biimpi 216 . . . . . . . . . . . . 13 (⟨𝑥, 𝑧⟩ ∈ 𝐴 → ∃𝑔𝐴𝑥, 𝑧⟩ ∈ 𝑔)
3332bnj1196 34777 . . . . . . . . . . . 12 (⟨𝑥, 𝑧⟩ ∈ 𝐴 → ∃𝑔(𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
3430, 33syl 17 . . . . . . . . . . 11 (𝜃 → ∃𝑔(𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
35 bnj1379.7 . . . . . . . . . . 11 (𝜏 ↔ (𝜃𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
36 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑔𝜑
37 nfra2w 3265 . . . . . . . . . . . . . . . . . 18 𝑔𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)
3836, 37nfan 1899 . . . . . . . . . . . . . . . . 17 𝑔(𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
391, 38nfxfr 1853 . . . . . . . . . . . . . . . 16 𝑔𝜓
40 nfv 1914 . . . . . . . . . . . . . . . 16 𝑔𝑥, 𝑦⟩ ∈ 𝐴
41 nfv 1914 . . . . . . . . . . . . . . . 16 𝑔𝑥, 𝑧⟩ ∈ 𝐴
4239, 40, 41nf3an 1901 . . . . . . . . . . . . . . 15 𝑔(𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴)
4317, 42nfxfr 1853 . . . . . . . . . . . . . 14 𝑔𝜒
44 nfv 1914 . . . . . . . . . . . . . 14 𝑔 𝑓𝐴
45 nfv 1914 . . . . . . . . . . . . . 14 𝑔𝑥, 𝑦⟩ ∈ 𝑓
4643, 44, 45nf3an 1901 . . . . . . . . . . . . 13 𝑔(𝜒𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓)
4722, 46nfxfr 1853 . . . . . . . . . . . 12 𝑔𝜃
4847nf5ri 2196 . . . . . . . . . . 11 (𝜃 → ∀𝑔𝜃)
4934, 35, 48bnj1345 34807 . . . . . . . . . 10 (𝜃 → ∃𝑔𝜏)
501simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝜓 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5117, 50bnj835 34742 . . . . . . . . . . . . . . . . 17 (𝜒 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5222, 51bnj835 34742 . . . . . . . . . . . . . . . 16 (𝜃 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5335, 52bnj835 34742 . . . . . . . . . . . . . . 15 (𝜏 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5422, 35bnj1219 34783 . . . . . . . . . . . . . . 15 (𝜏𝑓𝐴)
5553, 54bnj1294 34800 . . . . . . . . . . . . . 14 (𝜏 → ∀𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5635simp2bi 1146 . . . . . . . . . . . . . 14 (𝜏𝑔𝐴)
5755, 56bnj1294 34800 . . . . . . . . . . . . 13 (𝜏 → (𝑓𝐷) = (𝑔𝐷))
5857fveq1d 6824 . . . . . . . . . . . 12 (𝜏 → ((𝑓𝐷)‘𝑥) = ((𝑔𝐷)‘𝑥))
5922simp3bi 1147 . . . . . . . . . . . . . . . . 17 (𝜃 → ⟨𝑥, 𝑦⟩ ∈ 𝑓)
6035, 59bnj835 34742 . . . . . . . . . . . . . . . 16 (𝜏 → ⟨𝑥, 𝑦⟩ ∈ 𝑓)
61 vex 3440 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
62 vex 3440 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
6361, 62opeldm 5850 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ 𝑓𝑥 ∈ dom 𝑓)
6460, 63syl 17 . . . . . . . . . . . . . . 15 (𝜏𝑥 ∈ dom 𝑓)
65 vex 3440 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
6661, 65opeldm 5850 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑧⟩ ∈ 𝑔𝑥 ∈ dom 𝑔)
6735, 66bnj837 34744 . . . . . . . . . . . . . . 15 (𝜏𝑥 ∈ dom 𝑔)
6864, 67elind 4151 . . . . . . . . . . . . . 14 (𝜏𝑥 ∈ (dom 𝑓 ∩ dom 𝑔))
69 bnj1379.2 . . . . . . . . . . . . . 14 𝐷 = (dom 𝑓 ∩ dom 𝑔)
7068, 69eleqtrrdi 2839 . . . . . . . . . . . . 13 (𝜏𝑥𝐷)
7170fvresd 6842 . . . . . . . . . . . 12 (𝜏 → ((𝑓𝐷)‘𝑥) = (𝑓𝑥))
7270fvresd 6842 . . . . . . . . . . . 12 (𝜏 → ((𝑔𝐷)‘𝑥) = (𝑔𝑥))
7358, 71, 723eqtr3d 2772 . . . . . . . . . . 11 (𝜏 → (𝑓𝑥) = (𝑔𝑥))
742biimpi 216 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑓𝐴 Fun 𝑓)
751, 74bnj832 34741 . . . . . . . . . . . . . . . 16 (𝜓 → ∀𝑓𝐴 Fun 𝑓)
7617, 75bnj835 34742 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑓𝐴 Fun 𝑓)
7722, 76bnj835 34742 . . . . . . . . . . . . . 14 (𝜃 → ∀𝑓𝐴 Fun 𝑓)
7835, 77bnj835 34742 . . . . . . . . . . . . 13 (𝜏 → ∀𝑓𝐴 Fun 𝑓)
7978, 54bnj1294 34800 . . . . . . . . . . . 12 (𝜏 → Fun 𝑓)
80 funopfv 6872 . . . . . . . . . . . 12 (Fun 𝑓 → (⟨𝑥, 𝑦⟩ ∈ 𝑓 → (𝑓𝑥) = 𝑦))
8179, 60, 80sylc 65 . . . . . . . . . . 11 (𝜏 → (𝑓𝑥) = 𝑦)
82 funeq 6502 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
8382, 78, 56rspcdva 3578 . . . . . . . . . . . 12 (𝜏 → Fun 𝑔)
8435simp3bi 1147 . . . . . . . . . . . 12 (𝜏 → ⟨𝑥, 𝑧⟩ ∈ 𝑔)
85 funopfv 6872 . . . . . . . . . . . 12 (Fun 𝑔 → (⟨𝑥, 𝑧⟩ ∈ 𝑔 → (𝑔𝑥) = 𝑧))
8683, 84, 85sylc 65 . . . . . . . . . . 11 (𝜏 → (𝑔𝑥) = 𝑧)
8773, 81, 863eqtr3d 2772 . . . . . . . . . 10 (𝜏𝑦 = 𝑧)
8849, 87bnj593 34728 . . . . . . . . 9 (𝜃 → ∃𝑔 𝑦 = 𝑧)
8988bnj937 34754 . . . . . . . 8 (𝜃𝑦 = 𝑧)
9028, 89bnj593 34728 . . . . . . 7 (𝜒 → ∃𝑓 𝑦 = 𝑧)
9190bnj937 34754 . . . . . 6 (𝜒𝑦 = 𝑧)
9217, 91sylbir 235 . . . . 5 ((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)
93923expib 1122 . . . 4 (𝜓 → ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
9493alrimivv 1928 . . 3 (𝜓 → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
9594alrimiv 1927 . 2 (𝜓 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
96 dffun4 6495 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
9716, 95, 96sylanbrc 583 1 (𝜓 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  cin 3902  cop 4583   cuni 4858  dom cdm 5619  cres 5621  Rel wrel 5624  Fun wfun 6476  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490
This theorem is referenced by:  bnj1383  34814
  Copyright terms: Public domain W3C validator