Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1379 Structured version   Visualization version   GIF version

Theorem bnj1379 32523
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1379.1 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
bnj1379.2 𝐷 = (dom 𝑓 ∩ dom 𝑔)
bnj1379.3 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
bnj1379.5 (𝜒 ↔ (𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
bnj1379.6 (𝜃 ↔ (𝜒𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
bnj1379.7 (𝜏 ↔ (𝜃𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
Assertion
Ref Expression
bnj1379 (𝜓 → Fun 𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔,𝑥,𝑦,𝑧   𝑥,𝐷   𝜑,𝑔   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓)   𝜓(𝑓,𝑔)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑔)   𝜃(𝑥,𝑦,𝑧,𝑓,𝑔)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑔)   𝐷(𝑦,𝑧,𝑓,𝑔)

Proof of Theorem bnj1379
StepHypRef Expression
1 bnj1379.3 . . . . 5 (𝜓 ↔ (𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)))
2 bnj1379.1 . . . . . . . 8 (𝜑 ↔ ∀𝑓𝐴 Fun 𝑓)
32bnj1095 32474 . . . . . . 7 (𝜑 → ∀𝑓𝜑)
43nf5i 2146 . . . . . 6 𝑓𝜑
5 nfra1 3140 . . . . . 6 𝑓𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)
64, 5nfan 1907 . . . . 5 𝑓(𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
71, 6nfxfr 1860 . . . 4 𝑓𝜓
82bnj946 32467 . . . . . . . 8 (𝜑 ↔ ∀𝑓(𝑓𝐴 → Fun 𝑓))
98biimpi 219 . . . . . . 7 (𝜑 → ∀𝑓(𝑓𝐴 → Fun 𝑓))
10919.21bi 2186 . . . . . 6 (𝜑 → (𝑓𝐴 → Fun 𝑓))
111, 10bnj832 32450 . . . . 5 (𝜓 → (𝑓𝐴 → Fun 𝑓))
12 funrel 6397 . . . . 5 (Fun 𝑓 → Rel 𝑓)
1311, 12syl6 35 . . . 4 (𝜓 → (𝑓𝐴 → Rel 𝑓))
147, 13ralrimi 3137 . . 3 (𝜓 → ∀𝑓𝐴 Rel 𝑓)
15 reluni 5688 . . 3 (Rel 𝐴 ↔ ∀𝑓𝐴 Rel 𝑓)
1614, 15sylibr 237 . 2 (𝜓 → Rel 𝐴)
17 bnj1379.5 . . . . . 6 (𝜒 ↔ (𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴))
18 eluni2 4823 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑓𝐴𝑥, 𝑦⟩ ∈ 𝑓)
1918biimpi 219 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑓𝐴𝑥, 𝑦⟩ ∈ 𝑓)
2019bnj1196 32487 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∃𝑓(𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
2117, 20bnj836 32452 . . . . . . . . 9 (𝜒 → ∃𝑓(𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
22 bnj1379.6 . . . . . . . . 9 (𝜃 ↔ (𝜒𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓))
23 nfv 1922 . . . . . . . . . . . 12 𝑓𝑥, 𝑦⟩ ∈ 𝐴
24 nfv 1922 . . . . . . . . . . . 12 𝑓𝑥, 𝑧⟩ ∈ 𝐴
257, 23, 24nf3an 1909 . . . . . . . . . . 11 𝑓(𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴)
2617, 25nfxfr 1860 . . . . . . . . . 10 𝑓𝜒
2726nf5ri 2193 . . . . . . . . 9 (𝜒 → ∀𝑓𝜒)
2821, 22, 27bnj1345 32517 . . . . . . . 8 (𝜒 → ∃𝑓𝜃)
2917simp3bi 1149 . . . . . . . . . . . . 13 (𝜒 → ⟨𝑥, 𝑧⟩ ∈ 𝐴)
3022, 29bnj835 32451 . . . . . . . . . . . 12 (𝜃 → ⟨𝑥, 𝑧⟩ ∈ 𝐴)
31 eluni2 4823 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑔𝐴𝑥, 𝑧⟩ ∈ 𝑔)
3231biimpi 219 . . . . . . . . . . . . 13 (⟨𝑥, 𝑧⟩ ∈ 𝐴 → ∃𝑔𝐴𝑥, 𝑧⟩ ∈ 𝑔)
3332bnj1196 32487 . . . . . . . . . . . 12 (⟨𝑥, 𝑧⟩ ∈ 𝐴 → ∃𝑔(𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
3430, 33syl 17 . . . . . . . . . . 11 (𝜃 → ∃𝑔(𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
35 bnj1379.7 . . . . . . . . . . 11 (𝜏 ↔ (𝜃𝑔𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑔))
36 nfv 1922 . . . . . . . . . . . . . . . . . 18 𝑔𝜑
37 nfra2w 3149 . . . . . . . . . . . . . . . . . 18 𝑔𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷)
3836, 37nfan 1907 . . . . . . . . . . . . . . . . 17 𝑔(𝜑 ∧ ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
391, 38nfxfr 1860 . . . . . . . . . . . . . . . 16 𝑔𝜓
40 nfv 1922 . . . . . . . . . . . . . . . 16 𝑔𝑥, 𝑦⟩ ∈ 𝐴
41 nfv 1922 . . . . . . . . . . . . . . . 16 𝑔𝑥, 𝑧⟩ ∈ 𝐴
4239, 40, 41nf3an 1909 . . . . . . . . . . . . . . 15 𝑔(𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴)
4317, 42nfxfr 1860 . . . . . . . . . . . . . 14 𝑔𝜒
44 nfv 1922 . . . . . . . . . . . . . 14 𝑔 𝑓𝐴
45 nfv 1922 . . . . . . . . . . . . . 14 𝑔𝑥, 𝑦⟩ ∈ 𝑓
4643, 44, 45nf3an 1909 . . . . . . . . . . . . 13 𝑔(𝜒𝑓𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑓)
4722, 46nfxfr 1860 . . . . . . . . . . . 12 𝑔𝜃
4847nf5ri 2193 . . . . . . . . . . 11 (𝜃 → ∀𝑔𝜃)
4934, 35, 48bnj1345 32517 . . . . . . . . . 10 (𝜃 → ∃𝑔𝜏)
501simprbi 500 . . . . . . . . . . . . . . . . . 18 (𝜓 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5117, 50bnj835 32451 . . . . . . . . . . . . . . . . 17 (𝜒 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5222, 51bnj835 32451 . . . . . . . . . . . . . . . 16 (𝜃 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5335, 52bnj835 32451 . . . . . . . . . . . . . . 15 (𝜏 → ∀𝑓𝐴𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5422, 35bnj1219 32493 . . . . . . . . . . . . . . 15 (𝜏𝑓𝐴)
5553, 54bnj1294 32510 . . . . . . . . . . . . . 14 (𝜏 → ∀𝑔𝐴 (𝑓𝐷) = (𝑔𝐷))
5635simp2bi 1148 . . . . . . . . . . . . . 14 (𝜏𝑔𝐴)
5755, 56bnj1294 32510 . . . . . . . . . . . . 13 (𝜏 → (𝑓𝐷) = (𝑔𝐷))
5857fveq1d 6719 . . . . . . . . . . . 12 (𝜏 → ((𝑓𝐷)‘𝑥) = ((𝑔𝐷)‘𝑥))
5922simp3bi 1149 . . . . . . . . . . . . . . . . 17 (𝜃 → ⟨𝑥, 𝑦⟩ ∈ 𝑓)
6035, 59bnj835 32451 . . . . . . . . . . . . . . . 16 (𝜏 → ⟨𝑥, 𝑦⟩ ∈ 𝑓)
61 vex 3412 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
62 vex 3412 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
6361, 62opeldm 5776 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ 𝑓𝑥 ∈ dom 𝑓)
6460, 63syl 17 . . . . . . . . . . . . . . 15 (𝜏𝑥 ∈ dom 𝑓)
65 vex 3412 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
6661, 65opeldm 5776 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑧⟩ ∈ 𝑔𝑥 ∈ dom 𝑔)
6735, 66bnj837 32453 . . . . . . . . . . . . . . 15 (𝜏𝑥 ∈ dom 𝑔)
6864, 67elind 4108 . . . . . . . . . . . . . 14 (𝜏𝑥 ∈ (dom 𝑓 ∩ dom 𝑔))
69 bnj1379.2 . . . . . . . . . . . . . 14 𝐷 = (dom 𝑓 ∩ dom 𝑔)
7068, 69eleqtrrdi 2849 . . . . . . . . . . . . 13 (𝜏𝑥𝐷)
7170fvresd 6737 . . . . . . . . . . . 12 (𝜏 → ((𝑓𝐷)‘𝑥) = (𝑓𝑥))
7270fvresd 6737 . . . . . . . . . . . 12 (𝜏 → ((𝑔𝐷)‘𝑥) = (𝑔𝑥))
7358, 71, 723eqtr3d 2785 . . . . . . . . . . 11 (𝜏 → (𝑓𝑥) = (𝑔𝑥))
742biimpi 219 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑓𝐴 Fun 𝑓)
751, 74bnj832 32450 . . . . . . . . . . . . . . . 16 (𝜓 → ∀𝑓𝐴 Fun 𝑓)
7617, 75bnj835 32451 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑓𝐴 Fun 𝑓)
7722, 76bnj835 32451 . . . . . . . . . . . . . 14 (𝜃 → ∀𝑓𝐴 Fun 𝑓)
7835, 77bnj835 32451 . . . . . . . . . . . . 13 (𝜏 → ∀𝑓𝐴 Fun 𝑓)
7978, 54bnj1294 32510 . . . . . . . . . . . 12 (𝜏 → Fun 𝑓)
80 funopfv 6764 . . . . . . . . . . . 12 (Fun 𝑓 → (⟨𝑥, 𝑦⟩ ∈ 𝑓 → (𝑓𝑥) = 𝑦))
8179, 60, 80sylc 65 . . . . . . . . . . 11 (𝜏 → (𝑓𝑥) = 𝑦)
82 funeq 6400 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
8382, 78, 56rspcdva 3539 . . . . . . . . . . . 12 (𝜏 → Fun 𝑔)
8435simp3bi 1149 . . . . . . . . . . . 12 (𝜏 → ⟨𝑥, 𝑧⟩ ∈ 𝑔)
85 funopfv 6764 . . . . . . . . . . . 12 (Fun 𝑔 → (⟨𝑥, 𝑧⟩ ∈ 𝑔 → (𝑔𝑥) = 𝑧))
8683, 84, 85sylc 65 . . . . . . . . . . 11 (𝜏 → (𝑔𝑥) = 𝑧)
8773, 81, 863eqtr3d 2785 . . . . . . . . . 10 (𝜏𝑦 = 𝑧)
8849, 87bnj593 32437 . . . . . . . . 9 (𝜃 → ∃𝑔 𝑦 = 𝑧)
8988bnj937 32464 . . . . . . . 8 (𝜃𝑦 = 𝑧)
9028, 89bnj593 32437 . . . . . . 7 (𝜒 → ∃𝑓 𝑦 = 𝑧)
9190bnj937 32464 . . . . . 6 (𝜒𝑦 = 𝑧)
9217, 91sylbir 238 . . . . 5 ((𝜓 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)
93923expib 1124 . . . 4 (𝜓 → ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
9493alrimivv 1936 . . 3 (𝜓 → ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
9594alrimiv 1935 . 2 (𝜓 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
96 dffun4 6392 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
9716, 95, 96sylanbrc 586 1 (𝜓 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089  wal 1541   = wceq 1543  wex 1787  wcel 2110  wral 3061  wrex 3062  cin 3865  cop 4547   cuni 4819  dom cdm 5551  cres 5553  Rel wrel 5556  Fun wfun 6374  cfv 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-res 5563  df-iota 6338  df-fun 6382  df-fv 6388
This theorem is referenced by:  bnj1383  32524
  Copyright terms: Public domain W3C validator