Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1521 Structured version   Visualization version   GIF version

Theorem bnj1521 33862
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1521.1 (𝜒 → ∃𝑥𝐵 𝜑)
bnj1521.2 (𝜃 ↔ (𝜒𝑥𝐵𝜑))
bnj1521.3 (𝜒 → ∀𝑥𝜒)
Assertion
Ref Expression
bnj1521 (𝜒 → ∃𝑥𝜃)

Proof of Theorem bnj1521
StepHypRef Expression
1 bnj1521.1 . . 3 (𝜒 → ∃𝑥𝐵 𝜑)
21bnj1196 33805 . 2 (𝜒 → ∃𝑥(𝑥𝐵𝜑))
3 bnj1521.2 . 2 (𝜃 ↔ (𝜒𝑥𝐵𝜑))
4 bnj1521.3 . 2 (𝜒 → ∀𝑥𝜒)
52, 3, 4bnj1345 33835 1 (𝜒 → ∃𝑥𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088  wal 1540  wex 1782  wcel 2107  wrex 3071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2138  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090  df-ex 1783  df-nf 1787  df-rex 3072
This theorem is referenced by:  bnj1204  34023  bnj1311  34035  bnj1398  34045  bnj1408  34047  bnj1450  34061  bnj1312  34069  bnj1501  34078  bnj1523  34082
  Copyright terms: Public domain W3C validator