Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1521 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1521.1 | ⊢ (𝜒 → ∃𝑥 ∈ 𝐵 𝜑) |
bnj1521.2 | ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑)) |
bnj1521.3 | ⊢ (𝜒 → ∀𝑥𝜒) |
Ref | Expression |
---|---|
bnj1521 | ⊢ (𝜒 → ∃𝑥𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1521.1 | . . 3 ⊢ (𝜒 → ∃𝑥 ∈ 𝐵 𝜑) | |
2 | 1 | bnj1196 32823 | . 2 ⊢ (𝜒 → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) |
3 | bnj1521.2 | . 2 ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑)) | |
4 | bnj1521.3 | . 2 ⊢ (𝜒 → ∀𝑥𝜒) | |
5 | 2, 3, 4 | bnj1345 32853 | 1 ⊢ (𝜒 → ∃𝑥𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 ∀wal 1537 ∃wex 1779 ∈ wcel 2104 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-10 2135 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 df-ex 1780 df-nf 1784 df-rex 3072 |
This theorem is referenced by: bnj1204 33041 bnj1311 33053 bnj1398 33063 bnj1408 33065 bnj1450 33079 bnj1312 33087 bnj1501 33096 bnj1523 33100 |
Copyright terms: Public domain | W3C validator |