Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1521 Structured version   Visualization version   GIF version

Theorem bnj1521 34882
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1521.1 (𝜒 → ∃𝑥𝐵 𝜑)
bnj1521.2 (𝜃 ↔ (𝜒𝑥𝐵𝜑))
bnj1521.3 (𝜒 → ∀𝑥𝜒)
Assertion
Ref Expression
bnj1521 (𝜒 → ∃𝑥𝜃)

Proof of Theorem bnj1521
StepHypRef Expression
1 bnj1521.1 . . 3 (𝜒 → ∃𝑥𝐵 𝜑)
21bnj1196 34825 . 2 (𝜒 → ∃𝑥(𝑥𝐵𝜑))
3 bnj1521.2 . 2 (𝜃 ↔ (𝜒𝑥𝐵𝜑))
4 bnj1521.3 . 2 (𝜒 → ∀𝑥𝜒)
52, 3, 4bnj1345 34855 1 (𝜒 → ∃𝑥𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wal 1538  wex 1779  wcel 2108  wrex 3060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-ex 1780  df-nf 1784  df-rex 3061
This theorem is referenced by:  bnj1204  35043  bnj1311  35055  bnj1398  35065  bnj1408  35067  bnj1450  35081  bnj1312  35089  bnj1501  35098  bnj1523  35102
  Copyright terms: Public domain W3C validator