Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1521 Structured version   Visualization version   GIF version

Theorem bnj1521 34827
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1521.1 (𝜒 → ∃𝑥𝐵 𝜑)
bnj1521.2 (𝜃 ↔ (𝜒𝑥𝐵𝜑))
bnj1521.3 (𝜒 → ∀𝑥𝜒)
Assertion
Ref Expression
bnj1521 (𝜒 → ∃𝑥𝜃)

Proof of Theorem bnj1521
StepHypRef Expression
1 bnj1521.1 . . 3 (𝜒 → ∃𝑥𝐵 𝜑)
21bnj1196 34770 . 2 (𝜒 → ∃𝑥(𝑥𝐵𝜑))
3 bnj1521.2 . 2 (𝜃 ↔ (𝜒𝑥𝐵𝜑))
4 bnj1521.3 . 2 (𝜒 → ∀𝑥𝜒)
52, 3, 4bnj1345 34800 1 (𝜒 → ∃𝑥𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087  wal 1535  wex 1777  wcel 2108  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-ex 1778  df-nf 1782  df-rex 3077
This theorem is referenced by:  bnj1204  34988  bnj1311  35000  bnj1398  35010  bnj1408  35012  bnj1450  35026  bnj1312  35034  bnj1501  35043  bnj1523  35047
  Copyright terms: Public domain W3C validator