Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1521 Structured version   Visualization version   GIF version

Theorem bnj1521 32011
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1521.1 (𝜒 → ∃𝑥𝐵 𝜑)
bnj1521.2 (𝜃 ↔ (𝜒𝑥𝐵𝜑))
bnj1521.3 (𝜒 → ∀𝑥𝜒)
Assertion
Ref Expression
bnj1521 (𝜒 → ∃𝑥𝜃)

Proof of Theorem bnj1521
StepHypRef Expression
1 bnj1521.1 . . 3 (𝜒 → ∃𝑥𝐵 𝜑)
21bnj1196 31954 . 2 (𝜒 → ∃𝑥(𝑥𝐵𝜑))
3 bnj1521.2 . 2 (𝜃 ↔ (𝜒𝑥𝐵𝜑))
4 bnj1521.3 . 2 (𝜒 → ∀𝑥𝜒)
52, 3, 4bnj1345 31984 1 (𝜒 → ∃𝑥𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  w3a 1081  wal 1528  wex 1773  wcel 2107  wrex 3143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-10 2138  ax-12 2169
This theorem depends on definitions:  df-bi 208  df-an 397  df-3an 1083  df-ex 1774  df-nf 1778  df-rex 3148
This theorem is referenced by:  bnj1204  32170  bnj1311  32182  bnj1398  32192  bnj1408  32194  bnj1450  32208  bnj1312  32216  bnj1501  32225  bnj1523  32229
  Copyright terms: Public domain W3C validator