Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1351 Structured version   Visualization version   GIF version

Theorem bnj1351 32093
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1351.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
bnj1351 ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bnj1351
StepHypRef Expression
1 bnj1351.1 . 2 (𝜑 → ∀𝑥𝜑)
2 ax-5 1907 . 2 (𝜓 → ∀𝑥𝜓)
31, 2hban 2304 1 ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398  ∀wal 1531 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-10 2141  ax-12 2173 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781 This theorem is referenced by:  bnj1373  32297  bnj1445  32311
 Copyright terms: Public domain W3C validator