| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1351 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1351.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| bnj1351 | ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1351.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-5 1911 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | 1, 2 | hban 2302 | 1 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: bnj1373 35042 bnj1445 35056 |
| Copyright terms: Public domain | W3C validator |