Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1351 Structured version   Visualization version   GIF version

Theorem bnj1351 34303
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1351.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
bnj1351 ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bnj1351
StepHypRef Expression
1 bnj1351.1 . 2 (𝜑 → ∀𝑥𝜑)
2 ax-5 1912 . 2 (𝜓 → ∀𝑥𝜓)
31, 2hban 2295 1 ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785
This theorem is referenced by:  bnj1373  34507  bnj1445  34521
  Copyright terms: Public domain W3C validator